
Virtualization and File Systems



What are we studying in OS?

Short answer:  
one-to-many virtualization
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What are we studying in OS?

• One-to-many virtualization


• One physical CPU to many virtual CPUs: each user application runs on 
its own virtual CPU.


• One physical memory to many virtual memory spaces: each user 
application runs with its own virtual memory.


• One physical I/O device to many virtual I/O devices: each user 
application uses its own files / network connections.


• A process is a “virtual machine” with a virtual CPU, a piece 
of virtual memory and some virtual devices.



Big picture: One-to-many Virtualization
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Understanding File Descriptors



Other Types of Virtualization

• One-to-many virtualization


• Many-to-one virtualization


• e.g., RAID


• A-to-B virtualization


• e.g., run a Linux on top of Windows using Virtual Box


• Virtualization has been the key technology empowering 
cloud computing.



File Systems in EGOS
One-to-many virtualization for disks: 


virtualizing one storage device to many files



Layering Design
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Inode Number for One-to-many
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Power of Layering: Unified Interface

src/h/egos/block_store.h

Read the block_init function in src/apps/blocksvr.c



Question: Where to put the cache layer?
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Disk Hardware Cache
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There is cache here! 

It’s a piece of memory on the hard disk 
which is usually accompanied by a battery



File System Cache

Hard Disk
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Cache Layer
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Why putting 
cache here?

File #0 File #1 … File #0 File #1 …
Why not here?

Why not here?

There is cache here in Linux! 
It is usually called the file system cache 

which caches files, directories, etc. EGOS 
can also put a cache here but we haven’t 

implemented it.



First Look into File Systems: Layout
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General Flow of Read
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General Flow of Read
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Key Challenge: Maintain Metadata

Super 
Block Metadata region Data region

File #0 File #1 …

Block #0 Block #1 … Block #m Block #m + 1 … Block #n - 1

Read (ino, offset)

Read the metadata of ino Read the data of ino

Different file systems maintain 
the metadata in different ways and in 
P5, you will implement and maintain a 

simple way using linked lists. 



Maintain a Linked-list in Memory

• This is similar to what you did in P0.


• Allocate memory and then simply read/write.


• But how to maintain such a data structure on disk?



3 steps to maintain a Linked-list on disk

• Step1: allocate a buffer in memory and read a disk block 
into the buffer.

Super 
Block Metadata region Data region

Read & update the metadata of ino

char block[BLOCK_SIZE];
(*cs->below->read)(cs->below, ino, offset, block);



3 steps to maintain a Linked-list on disk

• Step2: read/write the data structure in this memory buffer.

Super 
Block Metadata region Data region

// example to increase the size of one file by one block
// variable block was defined in previous slide
struct fatdisk_inodeblock* inode_block = block;
inode_block->inodes[idx].nblocks += 1; 

Read & update the metadata of ino



3 steps to maintain a Linked-list on disk

• Step3: write the memory buffer back to disk.

Super 
Block Metadata region Data region

Read & update the metadata of ino

(*cs->below->write)(cs->below, ino, offset, block);



Take-aways

• OS studies virtualization of CPU, memory and I/O, leading to the concepts 
of context, virtual memory and file.


• File systems adopt a layering design: each layer has a specific purpose.


• The general layout of a file system contains super block, metadata region 
and data region. (P5 handout splits the metadata region into two regions)


• There are 3 steps to maintain the data structures in a file system: read from 
disk to memory; read/write memory; write back to disk.



Homework
• P5 is due on Dec 11. Implement the FAT file system.


• Read the block_init function in src/apps/blocksvr.c


• Next lecture on Dec. 2: Makefile and testing (P4).


