
Virtualization and File Systems

What are we studying in OS?

Short answer:
one-to-many virtualization

Virtualizing CPU

One physical CPU
to many virtual CPU

Virtualize

Virtual
CPU #1

Virtual
CPU #2

Virtual
CPU #n……

Virtualizing Memory

One physical
Memory

Virtualize

Virtual memory
address space #1

Virtual memory
address space #2

to many virtual
Memory

Virtualizing I/O

Virtualize

Virtualized device
#1

Virtualized device
#2

One physical I/O device to
many virtual I/O device

What are we studying in OS?

• One-to-many virtualization

• One physical CPU to many virtual CPUs: each user application runs on
its own virtual CPU.

• One physical memory to many virtual memory spaces: each user
application runs with its own virtual memory.

• One physical I/O device to many virtual I/O devices: each user
application uses its own files / network connections.

• A process is a “virtual machine” with a virtual CPU, a piece
of virtual memory and some virtual devices.

Big picture: One-to-many Virtualization

Virtualize Virtualize Virtualize

Virtual
CPU

Virtual
memory

Virtual I/O
device

Process
context

address space

file descriptor

Understanding File Descriptors

Other Types of Virtualization

• One-to-many virtualization

• Many-to-one virtualization

• e.g., RAID

• A-to-B virtualization

• e.g., run a Linux on top of Windows using Virtual Box

• Virtualization has been the key technology empowering
cloud computing.

File Systems in EGOS
One-to-many virtualization for disks:

virtualizing one storage device to many files

Layering Design

Hard Disk

Partition #0 …Partition #1

File System for Partition #0 File System for Partition #1 …

Cache Layer4411 P3

File #0 File #1 … File #0 File #1 …
4411 P4

Inode Number for One-to-many

Hard Disk

Partition #0 …Partition #1

Cache Layer

File System for Partition #0 File System for Partition #1 …

4411 P3

4411 P4
File #0 File #1 … File #0 File #1 …

Power of Layering: Unified Interface

src/h/egos/block_store.h

Read the block_init function in src/apps/blocksvr.c

Question: Where to put the cache layer?

Hard Disk

Partition #0 …Partition #1

Cache Layer

File System for Partition #0 File System for Partition #1 …

Why putting
cache here?

File #0 File #1 … File #0 File #1 …
Why not here?

Why not here?

Disk Hardware Cache

Hard Disk

Partition #0 …Partition #1

Cache Layer

File System for Partition #0 File System for Partition #1 …

Why putting
cache here?

File #0 File #1 … File #0 File #1 …
Why not here?

Why not here?
There is cache here!

It’s a piece of memory on the hard disk
which is usually accompanied by a battery

File System Cache

Hard Disk

Partition #0 …Partition #1

Cache Layer

File System for Partition #0 File System for Partition #1 …

Why putting
cache here?

File #0 File #1 … File #0 File #1 …
Why not here?

Why not here?

There is cache here in Linux!
It is usually called the file system cache

which caches files, directories, etc. EGOS
can also put a cache here but we haven’t

implemented it.

First Look into File Systems: Layout

File System for Partition #0

File #0 File #1 …
4411 P4

Super
Block Metadata region Data region

Block #0 Block #1 … Block #m Block #m + 1 … Block #n - 1

Suppose this partition has n blocks:

Block #0 … Block #n

General Flow of Read

Super
Block Metadata region Data region

File #0 File #1 …

Block #0 Block #1 … Block #m Block #m + 1 … Block #n - 1

Read (ino, offset)1

1

General Flow of Read

Super
Block Metadata region Data region

File #0 File #1 …

Block #0 Block #1 … Block #m Block #m + 1 … Block #n - 1

Read (ino, offset)

2 Read the metadata of ino

2

1

General Flow of Read

Super
Block Metadata region Data region

File #0 File #1 …

Block #0 Block #1 … Block #m Block #m + 1 … Block #n - 1

Read (ino, offset)

Read the metadata of ino 3 Read the data of ino

32

1

Key Challenge: Maintain Metadata

Super
Block Metadata region Data region

File #0 File #1 …

Block #0 Block #1 … Block #m Block #m + 1 … Block #n - 1

Read (ino, offset)

Read the metadata of ino Read the data of ino

Different file systems maintain
the metadata in different ways and in
P5, you will implement and maintain a

simple way using linked lists.

Maintain a Linked-list in Memory

• This is similar to what you did in P0.

• Allocate memory and then simply read/write.

• But how to maintain such a data structure on disk?

3 steps to maintain a Linked-list on disk

• Step1: allocate a buffer in memory and read a disk block
into the buffer.

Super
Block Metadata region Data region

Read & update the metadata of ino

char block[BLOCK_SIZE];
(*cs->below->read)(cs->below, ino, offset, block);

3 steps to maintain a Linked-list on disk

• Step2: read/write the data structure in this memory buffer.

Super
Block Metadata region Data region

// example to increase the size of one file by one block
// variable block was defined in previous slide
struct fatdisk_inodeblock* inode_block = block;
inode_block->inodes[idx].nblocks += 1;

Read & update the metadata of ino

3 steps to maintain a Linked-list on disk

• Step3: write the memory buffer back to disk.

Super
Block Metadata region Data region

Read & update the metadata of ino

(*cs->below->write)(cs->below, ino, offset, block);

Take-aways

• OS studies virtualization of CPU, memory and I/O, leading to the concepts
of context, virtual memory and file.

• File systems adopt a layering design: each layer has a specific purpose.

• The general layout of a file system contains super block, metadata region
and data region. (P5 handout splits the metadata region into two regions)

• There are 3 steps to maintain the data structures in a file system: read from
disk to memory; read/write memory; write back to disk.

Homework
• P5 is due on Dec 11. Implement the FAT file system.

• Read the block_init function in src/apps/blocksvr.c

• Next lecture on Dec. 2: Makefile and testing (P4).

