Virtualization and File Systems

What are we studying in OS?

Short answer:
one-to-many virtualization

26B PC25300U-555 Swissbit®

, ® ' | ’
= MEU25664 \
I n te' Bl 601682/ .21906387%? - 0840

! \ 4500010489 Made in Germany weem

Core™i7

]

Fugis e e sl
lg gj lg!ﬂ' 2?!!QJ lE?"Y Qj !!:!E peee

jm illllllllllllllllIIIIilllIli»l»IIIIIIVI»IIIIIIIIlI'I- II-I.IIII-:-.

&

Virtualizing CPU

KEYNOTE
-
’A -

One physical CPU
Virtual to many virtual CPU

CPU 2 BEE

Virtualize

268 PC253000455 SWissbit®
MEU25664D6BC2ER-30R

601682 / 20037725 0840 5
4500010489 Made in Germany memm {SSUS

:'A‘Zi‘hlimaan 94v:-‘;>
rE 3

I

|
PP POPPOOCPPOROPOI

e i e s

Virtualizing Memory

One physical 57 4
M e m 0 ry Virtual memory Virtual memory

address space #1 address space #2

to many virtual

‘ 1 ¥ | S 268 PC25000585 Swissbit®
| . 1 .
~ (intel/ B Al
| V . A 4500010489 Made in Germany mmmm {89 g8
| o
‘ y 3
. Eore’iZ
| } N
- S :
—u — :
3
8
i
A, A

irtualizing 1/0

KEYNOTE

oA :

One phys_lcal /0 evice to ot A
many Vlrtual I/ deVICe Virtualized device g \Virtualized device

#1 #2

Virtualize
' ¥ | L‘f 2B PCIS300U5855 Swissbit®
(Il'.lle| B uvcsn g

\ 4500010489 Made in Germany weem
Core™ i7 i

! 3

= 3 334
> — 331
33

oGl VS = P A IPSHS S

AU ARNAR AL EEY . AOOATEADEAREAEAE TR R A . @

What are we studying in OS?

* One-to-many virtualization

* One physical CPU to many virtual CPUs: each user application runs on
its own virtual CPU.

 One physical memory to many virtual memory spaces: each user
application runs with its own virtual memory.

* One physical I/O device to many virtual I/0 devices: each user
application uses its own files / network connections.

e A process is a “virtual machine” with a virtual CPU, a piece
of virtual memory and some virtual devices.

Big picture: One-to-many Virtualization

Process

context file descriptor

address space

Virtual I/0
device

Virtual

CPU

Virtualize Virtualize Virtualize

SR 2GR PC2300U455 Swissbit®

| B MEU2SS :
(Il'lte|) B o,

‘ : : \ - b s e i LE.:."-T QJ M e
Co'—em i7 ‘ ; g3 3843 IR nnnm
g i
| >

Understanding File Descriptors

. NON test — yunhao@YunhaodeMacBook-Pro — -zsh — 84x24

~[test +

[+ test l1s

files test.c

[+ test 1ls files
hellol helloZ2 hello3
» test cat test.c
#include <stdio.h>
#1include <fcntl.h>
#include <unistd.h>

int main() {
int filel = open("files/hellol”, O_RDWR);
int file2 = open("files/hello2", O_RDWR);
int file3 open("files/hello3", O_RDWR);

printf("filel: %d, file2: %d, file3: %d\n", filel, file2, file3);

char content[] = "new content for filel\n";
write(filel, content, sizeof(content));

return 0;

Other Types of Virtualization

 Many-to-one virtualization
* e.g., RAID
e A-to-B virtualization
* e.g., run a Linux on top of Windows using Virtual Box

* Virtualization has been the key technology empowering
cloud computing.

File Systems in EGOS

One-to-many virtualization for disks:
virtualizing one storage device to many files

Layering Design

File #0 ‘ File #1 ‘ File #0 ‘ File #1 ‘
4411 P4

: | File System for Partition #0 | File System for Partition #1 ‘
4411 P3 Cache Layer

Partition #0 ‘ Partition #1

Hard Disk

Inode Number for One-to-many

File #0 ‘ File #1 ‘ File #0 ‘ File #1 ‘
4411 P4

File System for Partition #0 ‘ File System for Partition #1 ‘
4411 P3 Cache Layer

Partition #0 ‘ Partition #1 ‘

Hard Disk

Power of Layering: Unified Interface

typedef struct block_store {
volid xstate;
int (xgetninodes) (struct block_store xthis_bs);
int (xgetsize)(struct block_store xthis_bs, unsigned int ino);
int (xksetsize)(struct block _store xthis_bs, wunsigned int ino, block_no newsize);

int (xread)(struct block_store xthis_bs, unsigned int ino, block _no offset, block t xblock);
int (kwrite)(struct block _store xthis_bs, unsigned int ino, block_no offset, block_t *block);
void (xrelease)(struct block store xthis bs);
int (xsync)(struct block _store xthis_bs, unsigned int 1ino);

} block store t;

src/h/egos/block_store.h

Read the block_1n1t function in src/apps/blocksvr.c

Question: Where to put the cache layer?

File #0 ‘ File #1 ‘ File #0 ‘ File #1 ‘

Why not here?

| o

File System for Partition #0 ‘ File System for Partition #1 ‘

Why putting
cache here?

Cache Layer

Partition #0 ‘ Partition #1 ‘

Why not here?

Hard Disk

Disk Hardware Cache

File #0 ‘ File #1 ‘ File #0 ‘ File #1 ‘

Why not here?

| o

File System for Partition #0 ‘ File System for Partition #1 ‘

Why putting

cache here? Cache Layer

" EER IS

There Is cache here! :|

Why not here? . |t’s a piece of memory on the hard disk

Ewhich Is usually accompanied by a batteryé

ﬁ
|

lll

File System Cache

ll

F There is cache here in Linux!

~.. Itis usually called the file system cache
F: which caches files, directories, etc. EGOS: 1

Why not here? -

e

—

—: can also put a cache here but we haven’t

Why putting | : Implemented It.
cache here? :

Partition #0 Partition #1

Why not here?

Hard Disk

First Look into File Systems: Layout

4411 P4

File System for Partition #0 Suppose this partition has n blocks:
e sssesssssssssssssssessssssssssos : Block #0 ... Block #n

Super

Block Metadata region Data region

Block #0 Block #1 ... Block #m Block #m + 1 ... Block #n - 1

Read (1no, offset)

v

General Flow of Read

File #0

‘Hb#ﬂ‘

Super
Block

Metadata region

Data region

Block

0O Block

1 ... Block

m

Block

m+ 1 ... Block

Read (1no, offset)

v

General Flow of Read

File #0

‘Hb#ﬂ‘

Read the metadata of 1no

\ 4

Super
Block

Metadata region ‘

Data region

Block

0 Block

1 ... Block

m

Block

m+ 1 ... Block

n_

General Flow of Read

Read (1no, offset)

v

Hb#@‘Fmﬁﬁ‘

Read the metadata of 1no Read the data of 1no
Super Metadata region Data region
Block J J

Block #0 Block #1 ... Block #m Block #m + 1 ... Block #n - 1

Read (1no, offset)

v

File #0

‘Hb#ﬂ‘

Read the metadata of 1no

\ 4

Key Challenge: Maintain Metadata

" Different file systems maintain '

_-" the metadata in different ways and in
, P9, you will implement and maintain a

.. simple way using linked lists.

t“
.
.®

.
““
........

S N
.
e®
e®
e®
e®
“

Read the data of 1no

\ 4

Super . .
Block Metadata region ‘ Data region
Block #0 Block #1 ... Block #m Block #m + 1 ... Block #n - 1

Maintain a Linked-list iIn Memory

* This is similar to what you did in PO.
* Allocate memory and then simply read/write.

e But how to maintain such a data structure on disk?

3 steps to maintain a Linked-list on disk

» Stepl: allocate a buffer in memory and read a disk block
iInto the buffer.

Read & update the metadata of 1no

\ 4

Metadata region ‘ Data region

Super
Block

char block[BLOCK_SIZE];
(*cs->below->read)(cs->below, 1no, offset, block);

3 steps to maintain a Linked-list on disk

o Step?2: read/write the data structure in this memory buffer.

Read & update the metadata of 1no

\ 4

Metadata region ‘ Data region

Super
Block

// example to i1ncrease the size of one file by one block
// variable block was defined 1n previous slide

struct fatdisk_inodeblock* 1node_block = block;
1hode_block->1nodes|[1dx].nblocks += 1;

3 steps to maintain a Linked-list on disk

e Step3: write the memory buffer back to disk.

Read & update the metadata of 1no

\ 4

Metadata region ‘ Data region

Super
Block

(*cs->below->write)(cs->below, 1no, offset, block);

Take-aways

OS studies virtualization of CPU, memory and /O, leading to the concepts
of context, virtual memory and file.

File systems adopt a layering design: each layer has a specific purpose.

The general layout of a file system contains super block, metadata region
and data region. (P5 handout splits the metadata region into two regions)

There are 3 steps to maintain the data structures in a file system: read from
disk to memory; read/write memory; write back to disk.

Homework

 P5is due on Dec 11. Implement the FAT file system.

 Read the block_1n1t function in src/apps/blocksvr.c

* Next lecture on Dec. 2: Makefile and testing (P4).

