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Other

I/O

Disk Head Scheduling

OS maximizes disk I/O throughput by minimizing 
head movement through disk head scheduling


and this time we have a good sense of tasks’ length!

(surface, track, sector)

CPU
Disk

In a multiprogramming/time sharing environment, a 
queue of disk I/Os can form

Read about disk 
scheduling algorithms 

in class notes and  
in  Chapter 37 of  

3 Easy Pieces



FCFS 

Assume a queue of request exists to read/write 
tracks

83 72 14 147 16 150 and the head is on track 65

0 150125100755025 65

FCFS scheduling results in disk head moving 550 tracks

15

and makes no use of what we know about the length of the tasks!



SSTF:  
Shortest Seek Time First

Greedy scheduling

Rearrange queue from:

        to:

83 72 14 147 16 150

83 7214 14716 150

0 150125100755025

Head moves 221 tracks

6515

BUT OS knows blocks, not 
tracks (easily fixed)

starvation



SCAN Scheduling

“Elevator”

Move the head in one direction until all requests 
have been serviced, and then reverse


Rearrange queue from:

        to:  

83 72 14 147 16 150

83 72 14147 16150

Head moves 187 tracks.  

0 150125100755025 6515

sweeps disk back and forth



C-SCAN scheduling

Circular SCAN

sweeps disk in one direction (from outer to inner track), 
then resets to outer track and repeats

0 150125100755025 6515

More uniform wait time than SCAN

moves head to serve requests that are likely 
to have waited longer



OS Outsources

Scheduling Decisions
Selecting which track to serve next should include 
rotation time (not just seek time!)


SPTF: Shortest Positioning Time First

Hard for the OS to estimate rotation time accurately


Hierarchical decision process

OS sends disk controller a batch of “reasonable” requests

disk controller makes final scheduling decisions



Back to Storage…
What qualities we want from storage?


Reliable: It returns the data you stored 

Fast: It returns the data you stored promptly

Affordable: It does not break the bank

Plenty: It holds everything you need


What we may instead get is a SLED!

Single, Large, Expensive Disk



RAID
Redundant Array of Inexpensive* Disks

* In industry, “inexpensive” has been replaced by “independent”  :-)

Read about disk 
scheduling algorithms 

in class notes and  
in  Chapter 38 of  

3 Easy Pieces



E Pluribus Unum
Implement the abstraction of a faster, bigger and more 
reliable disk using a collection of slower, smaller, and more 
likely to fail disks


different configurations offer different tradeoffs


Key feature: transparency

The Power of Abstraction™

to the OS looks like a single, large, highly performant and highly 
reliable single disk (a SLED, hopefully with lower-case “e”!)


a linear array of blocks

mapping needed to get to actual disk

cost: one logical I/O may translate into multiple physical I/Os


In the box:

microcontroller, DRAM (to buffer blocks) [sometimes non-volatile 
memory, parity logic]



Failure Model
RAID adopts the strong, somewhat unrealistic Fail-Stop 
failure model (electronic failure, wear out, head damage)


component works correctly until it crashes, permanently

disk is either working: all sectors can be read and written

or has failed: it is permanently lost


failure of the component is immediately detected

RAID controller can immediately observe a disk has failed and 
accesses return error codes


In reality, disks can also suffer from isolated sector failures

Permanent: physical malfunction (magnetic coating, scratches, 
contaminants)

Transient: data is corrupted, but new data can be successfully 
read from/written to sector



How to Evaluate a RAID

Capacity

what fraction of the sum of the storage of its 
constituent disks does the RAID make available?


Reliability

How many disk faults can a specific RAID 
configuration tolerate? 


Performance

Workload dependent



RAID-0: Striping 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Stripe
Stripe

Stripe

Stripe

Spread blocks across disks using round robin

+ Excellent parallelism           
can read/write from multiple disks      

– Worst-case positioning time
 wait for largest across all disks



RAID-0: Striping

(Big Chunk Edition)

0 
1

2 
3

4 
5

6 
7

8 
9

10 
11

12 
13

14 
15

Stripe

Stripe

+ improve positioning time        — decrease parallelism

Spread blocks across disks using round robin



RAID-0: Evaluation
Capacity


Excellent: N disks, each holding B blocks support the 
abstraction of a single disk with NxB blocks


Reliability

Poor: Striping reduces reliability


Any disk failure causes data loss


Performance

Workload dependent, of course

We’ll consider two workloads


Sequential: single disk transfers S MB/s 

Random: single disk transfer R MB/s

S >> R



RAID-0: Performance

Single-block read/write throughput

about the same as accessing a single disk


Latency

Read: T ms (latency of one I/O op to disk)

Write: T ms


Steady-state read/write throughput

Sequential: N x S MB/s

Random: N x R MB/s



RAID-1: Mirroring

0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

Each block is replicated twice

Read from any    Write to both



RAID-1: Evaluation
Capacity


 Poor: N disks of B blocks yield (N x B)/2 blocks

Reliability


Good: Can tolerate the loss (not corruption!) of any one 
disk


Performance

Fine for reads: can choose any disk

Poor for writes: every logical write requires writing to 
both disks 


suffers worst seek+rotational delay of the two writes



RAID-1: Performance
Steady-state throughput


Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes


Sequential Reads: as low as N/2 x S MB/s
Suppose we want to read

0, 1, 2, 3, 4, 5, 6, 7
0 0 1 1
2 2 3 3
4 4 5 5
6 6 7 7



RAID-1: Performance
Steady-state throughput


Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes


Sequential Reads: as low as N/2 x S MB/s


Random Writes: N/2 x R MB/s

Each logical Write involves two physical Writes


Random Reads: N x R MB/s

Reads can be distributed across all disks


Latency for Reads and Writes: T ms

0 0 1 1
2 2 3 3
4 4 5 5
6 6 7 7

Suppose we want to read
0, 1, 2, 3, 4, 5, 6, 7

Each disk only delivers half of his bandwidth:
half of its blocks are skipped!



RAID-4: Block Striped, 
with Parity

Data disks Parity disk

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Stripe

Stripe

Stripe

Stripe

1 1
1

1

0
00

00

1 0
1

1

0
01

10

1 0
1

1

0
00

01

1 1
1

1

0
11

00

0
0

1

0 0
0 1

1 0



RAID-4: Block Striped, 
with Parity

Data disks Parity disk

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Stripe

Stripe

Stripe

Stripe

1 1
1

1

0
00

00

1 0
1

1

0
01

10

1 0
1

1

0
00

01

1 1
1

1

0
11

00

0
0

1

0 0
0 1

1 0

Disk controller can identify faulty disk

single parity disk can detect and correct errors



RAID-4: Evaluation
Capacity


N disks of B blocks yield (N-1) x B  blocks

Reliability


Tolerates the failure of any one disk

Performance


Fine for sequential read/write accesses and random 
reads

Random writes are a problem!



RAID-4: Performance
Sequential Reads: (N-1) x S MB/s

Sequential Writes: (N-1) x S MB/s


compute & write parity block once for the full stripe 

Random Read: (N-1) x R MB/s

Random Writes: R/2 MB/s (N is gone! Yikes!)


need to read block Bold from disk and parity block Pold

Compute Pnew = (Bold XOR Bnew) XOR Pold


Write back Bnew and Pnew

Every write must go through parity disk, eliminating any 
chance of parallelism 

Every logical I/O requires two physical I/Os at parity disk: 
can at most achieve 1/2 of its random transfer rate (i.e. R/2) 


Latency:  Reads: T ms; Writes: 2T ms



RAID-5: Rotating Parity

(avoids the bottleneck)

Parity and Data distributed across all disks

0 1 2 3 P0

5 6 7 P1 4

10 11 P2 8 9

15 P3 12 13 14

P4 16 17 18 19



RAID-5: Evaluation
Capacity & Reliability


As in Raid-4

Performance


Sequential read/write accesses as in RAID-4

(N-1) x S MB/s


Random Reads are slightly better

N x R MB/s (instead of (N-1) x R MB/s)


Random Writes much better than RAID-4: R/2 x N/2

as in RAID-4 writes involve two operations at every disk: 
each disk can achieve at most R/2

but, without a bottleneck parity disk, we can issue up to 
N/2 writes in parallel (each involving 2 disks)



SSDs



Why care?

Require seek, rotate, 
transfer on each I/O

Not parallel (one active 
head)

Brittle (moving parts)

Slow (mechanical)

Poor random I/O (10s 
of ms)


No seeks

Parallel

No moving parts

Random reads take 10s 
of µs

Wears out!

HDD SSD



Flash Storage

To write 0

apply positive voltage to drain

apply even stronger positive 
voltage to control gate

some electrons are tunneled into 
floating gate

N

source

N

drain

Control gate

P-Type substrate

Floating gate

Bit stored here, 
surrounded by an insulator


No charge = 1

Charge = 0

Fowler-Nordheim tunneling

Oxide 

sidewall

Oxide 

tunnel

Oxide/Nitride/Oxide 

ONO inter-poly 
dielectric (insulator)

To write 1

apply positive voltage to drain

apply negative voltage to control 
gate

electrons are forced out of 
floating gate into source

To read

apply voltage to control gate

apply voltage across source and 
drain

measure current between source 
and drain to determine whether 
electrons in gate


if electrons in floating gate, 
must apply higher voltage to 
control gate to have current

measured current can encode 
more than a single bit

+

+



The SSD 

Storage Hierarchy

Cell
1 to 4

bits

Plane/Bank
Many blocks

(Several Ks)

Several banks that 
can be accessed


in parallel

Flash ChipBlock
64 to 256

 pages

not to be confused 
with a disk block

Page
2 KB to 8 KB

not to be 
confused with 

a VM page



Basic Flash Operations 
Read (a page)


10s of µs, independent of the previously read page

great for random access!


Erase (a block)

sets the entire block (with all its pages) to 1 (!)

very coarse way to write 1s…

1.5 to 2 ms (on a fast single level cell)


Program (a page)

can change some bits in a page of an erased block to 0

100s of µs

changing a 0 bit back to 1 requires erasing the entire block!



Using Flash Memory

Need to map reads and writes to logical blocks to 
read, program, and erase operations on flash

Flash Translation Layer (FTL)



Flash Flash

Flash

Flash

Flash

Memory

Flash

Controller

In
te

rf
ac

e 
lo

gi
c

Caching and

Mapping tables

Control logicDevice interface 

(logical blocks, page-sized)

From Flash to SSD

Flash Translation Layer

tries to minimize


write amplification: [                           ]

wear out: practices wear leveling

disturbance: when many reads occur from pages of the 
same block, value of nearby cells can be affected

Flash

write traffic (bytes) to flash chips
write traffic (bytes) from client to SSD



File Systems



The File System 
Abstraction

Addresses need for long-term information storage:

store large amounts of information

do it in a way that outlives processes (RAM will not do)

can support concurrent access from multiple processes


Presents applications with persistent, named data

Two main components: 


files 

directories



The File
A file is a named collection of data. In fact, it has 
many names, depending on context: 


i-node number: low-level name assigned to the file by the 
file system

path: human friendly string


must be mapped to inode number, somehow

file descriptor


dynamically assigned handle a process uses to refer to i-node 


A file has two parts

data – what a user or application puts in it


array of untyped bytes 

metadata – information added and managed by the OS


size, owner, security info, modification time, etc.



The Directory

A special file that stores mappings between human-
friendly names of files and their inode numbers


Has its own inode, of course

Mapping may of course also apply                           
to human-friendly names of                       
directories and their inodes


directory tree

/ indicates the root

Users bin

lorenzo irene ls

Duc1000s.
pdf

/



Mount

Point

Mount

Mount: allows multiple 
file systems on multiple 
volumes to form a single 
logical hierarchy


a mapping from some 
path in existing file 
system to the root 
directory of the 
mounted file system

USB

Volumes

/

Bin

Home

Lorenzo

Lorenzo’s

disk

Princess

Bride

Movies

/

Backup

USB Volume



The Abstraction Stack

Application

Library

File System

Physical Device

I/O systems are accessed through 
a series of layered abstractions



The Abstraction Stack

Application

Library

File System

Block Cache
Block Device 
Interface 

Device Driver
MM I/O, 

DMA,Interrupts

Physical Device

I/O systems are accessed through a 
series of layered abstractions

{

<latexit sha1_base64="0/T1Njel75jyvWQtdxjvdlXxCIc=">AAAB33icdVDLSgMxFL1TX7W+6mPnJlgEV8OMLdqdRRe6rGIf0JaSSTNtaCYzJBmhDl27EXGj4E/4Hf6Cy/6CX2Da6qI+Dlw4nHMuuSdexJnSjvNupebmFxaX0suZldW19Y3s5lZVhbEktEJCHsq6hxXlTNCKZprTeiQpDjxOa17/bOzXbqhULBTXehDRVoC7gvmMYG2kq2bSzuZc25kA/U9yJx+j89ed21G5nX1rdkISB1RowrFSDdeJdCvBUjPC6TDTjBWNMOnjLk0m9w3RvpE6yA+lGaHRRJ3J4UCpQeCZZIB1T/30xuJfXiPWfrGVMBHFmgoyfciPOdIhGpdFHSYp0XxgCCaSmQsR6WGJiTZfkjHVHTt/VHDzDvpNvqtXD223YBcvnVzpFKZIwy7swQG4cAwluIAyVICAD/fwBM8Wtu6sB+txGk1ZXzvbMAPr5RN8hY3A</latexit>
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<latexit sha1_base64="0/T1Njel75jyvWQtdxjvdlXxCIc=">AAAB33icdVDLSgMxFL1TX7W+6mPnJlgEV8OMLdqdRRe6rGIf0JaSSTNtaCYzJBmhDl27EXGj4E/4Hf6Cy/6CX2Da6qI+Dlw4nHMuuSdexJnSjvNupebmFxaX0suZldW19Y3s5lZVhbEktEJCHsq6hxXlTNCKZprTeiQpDjxOa17/bOzXbqhULBTXehDRVoC7gvmMYG2kq2bSzuZc25kA/U9yJx+j89ed21G5nX1rdkISB1RowrFSDdeJdCvBUjPC6TDTjBWNMOnjLk0m9w3RvpE6yA+lGaHRRJ3J4UCpQeCZZIB1T/30xuJfXiPWfrGVMBHFmgoyfciPOdIhGpdFHSYp0XxgCCaSmQsR6WGJiTZfkjHVHTt/VHDzDvpNvqtXD223YBcvnVzpFKZIwy7swQG4cAwluIAyVICAD/fwBM8Wtu6sB+txGk1ZXzvbMAPr5RN8hY3A</latexit>
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The Abstraction Stack

I/O systems are accessed through a 
series of layered abstractions


Caches blocks recently read from disk

Buffers recently written blocks

Application

Library

File System

Block Cache
Block Device 
Interface 

Device Driver
MM I/O, 

DMA,Interrupts

Physical Device



The Abstraction Stack

I/O systems are accessed through a 
series of layered abstractions


Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices, 
allows data to be read/written in 
fixed sized blocks

Application

Library

File System

Block Cache
Block Device 
Interface 

Device Driver
MM I/O, 

DMA,Interrupts

Physical Device



The Abstraction Stack

I/O systems are accessed through a 
series of layered abstractions


Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices, 
allows data to be read/written in 
fixed sized blocks

Translates OS abstractions and hw 
specific details of I/O devices

Application

Library

File System

Block Cache
Block Device 
Interface 

Device Driver
MM I/O, 

DMA,Interrupts

Physical Device



The Abstraction Stack

I/O systems are accessed through a 
series of layered abstractions


Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices, 
allows data to be read/written in 
fixed sized blocks

Translates OS abstractions and hw 
specific details of I/O devices

Control registers, bulk data transfer, 
OS notifications

Application

Library

File System

Block Cache
Block Device 
Interface 

Device Driver
MM I/O, 

DMA,Interrupts

Physical Device



File System API
Creating a file


 

returns a file descriptor, a per-process integer that grants 
process a capability to perform certain operations on the file

int close(int fd);  closes the file 

Reading/Writing

 

  

return number of bytes read/written

 


repositions file’s offset (initially 0, updates on reads and writes)

to offset bytes from beginning of file (SEEK_SET)

to offset bytes from current location (SEEK_CUR)

to offset bytes after the end of the file (SEEK_END)

int fd = open(“foo”, O_CREAT|O_RDWR|O_TRUNC, S_IRUSR|S_IWUSR); 

path {
<latexit sha1_base64="I3xrejEZjtFheIrmieyu6hmbAX4=">AAAB33icdVDLSgMxFL1TX3V8VV26CRbB1TBji3ZhseDGZRX7gLaUTJppQzOTIckIZejajYgbBdf+jH8g/oZfYNrqoj4OXDiccy65J37MmdKu+25lFhaXlleyq/ba+sbmVm57p65EIgmtEcGFbPpYUc4iWtNMc9qMJcWhz2nDH55P/MYNlYqJ6FqPYtoJcT9iASNYG+mqnXZzec9xp0D/k/zZRzl+ebPL1W7utd0TJAlppAnHSrU8N9adFEvNCKdju50oGmMyxH2aTu8bowMj9VAgpJlIo6k6l8OhUqPQN8kQ64H66U3Ev7xWooNSJ2VRnGgakdlDQcKRFmhSFvWYpETzkSGYSGYuRGSAJSbafIltqrtO4bjoFVz0m3xXrx85XtEpXXr5yinMkIU92IdD8OAEKnABVagBgQDu4BGeLGzdWvfWwyyasb52dmEO1vMnY2CM5A==</latexit>

{
<latexit sha1_base64="I3xrejEZjtFheIrmieyu6hmbAX4=">AAAB33icdVDLSgMxFL1TX3V8VV26CRbB1TBji3ZhseDGZRX7gLaUTJppQzOTIckIZejajYgbBdf+jH8g/oZfYNrqoj4OXDiccy65J37MmdKu+25lFhaXlleyq/ba+sbmVm57p65EIgmtEcGFbPpYUc4iWtNMc9qMJcWhz2nDH55P/MYNlYqJ6FqPYtoJcT9iASNYG+mqnXZzec9xp0D/k/zZRzl+ebPL1W7utd0TJAlppAnHSrU8N9adFEvNCKdju50oGmMyxH2aTu8bowMj9VAgpJlIo6k6l8OhUqPQN8kQ64H66U3Ev7xWooNSJ2VRnGgakdlDQcKRFmhSFvWYpETzkSGYSGYuRGSAJSbafIltqrtO4bjoFVz0m3xXrx85XtEpXXr5yinMkIU92IdD8OAEKnABVagBgQDu4BGeLGzdWvfWwyyasb52dmEO1vMnY2CM5A==</latexit>

flags permissions

ssize_t  read (int fd, void *buf, size_t count);

ssize_t  write (int fd, void *buf, size_t count);

off_t  lseek (int fd, off_t offset, int whence);



File System API
Writing synchronously


 

flushes to disk all dirty data for file referred to by fd 
if file is newly created, must fsynch also its directory!


Getting file’s metadata

stat() , fstat()  — return a stat structure

int fsynch (int fd); 

  struct stat {
     dev_t st_dev; /* ID of device containing file */
     ino_t st_ino; /* inode number */
     mode_t st_mode; /* protection */
     nlink_t st_nlink; /* number of hard links */
     uid_t st_uid; /* user ID of owner */
     gid_t st_gid; /* group ID of owner */
     dev_t st_rdev; /* device ID (if special file) */
     off_t st_size; /* total size, in bytes */
     blksize_t st_blksize; /* blocksize for filesystem I/O */
     blkcnt_t st_blocks; /* number of blocks allocated */
     time_t st_atime; /* time of last access */
     time_t st_mtime; /* time of last modification */
     time_t st_ctime; /* time of last status change */
};

retrieved from 
file’s inode 


on disk, per-file 
data structure

may be cached 
in memory



Old Friends

Remember fork()?
int main(int argc, char *argv[]){

int fd = open(“file.txt”, O_RDONLY);
assert (fd >= 0);
int rc = fork();
if (rc == 0) { /* child */

rc = lseek(fd, 10, SEEK_SET);
printf(“child: offset %d\n”, rc);

} else if (rc > 0) { /* parent */
(void) wait(NULL);
printf(“parent: offset %d\n”,

(int) lseek(fd, 10, SEEK_CUR));
}
return 0;

}

What does this code print?
child: offset 10
parent: offset 20

Parent

Child

Open File 

Table

File 
Descriptors

File 
Descriptors

refcnt: 2
off: 20
inode 52874

7

7


