
Prelim 2

Median: B

Other

I/O

Disk Head Scheduling

OS maximizes disk I/O throughput by minimizing
head movement through disk head scheduling

and this time we have a good sense of tasks’ length!

(surface, track, sector)

CPU
Disk

In a multiprogramming/time sharing environment, a
queue of disk I/Os can form

Read about disk
scheduling algorithms

in class notes and
in Chapter 37 of

3 Easy Pieces

FCFS

Assume a queue of request exists to read/write
tracks

83 72 14 147 16 150 and the head is on track 65

0 150125100755025 65

FCFS scheduling results in disk head moving 550 tracks

15

and makes no use of what we know about the length of the tasks!

SSTF:
Shortest Seek Time First

Greedy scheduling

Rearrange queue from:

 to:

83 72 14 147 16 150

83 7214 14716 150

0 150125100755025

Head moves 221 tracks

6515

BUT OS knows blocks, not
tracks (easily fixed)

starvation

SCAN Scheduling

“Elevator”

Move the head in one direction until all requests
have been serviced, and then reverse

Rearrange queue from:

 to:

83 72 14 147 16 150

83 72 14147 16150

Head moves 187 tracks.

0 150125100755025 6515

sweeps disk back and forth

C-SCAN scheduling

Circular SCAN

sweeps disk in one direction (from outer to inner track),
then resets to outer track and repeats

0 150125100755025 6515

More uniform wait time than SCAN

moves head to serve requests that are likely
to have waited longer

OS Outsources

Scheduling Decisions
Selecting which track to serve next should include
rotation time (not just seek time!)

SPTF: Shortest Positioning Time First

Hard for the OS to estimate rotation time accurately

Hierarchical decision process

OS sends disk controller a batch of “reasonable” requests

disk controller makes final scheduling decisions

Back to Storage…
What qualities we want from storage?

Reliable: It returns the data you stored

Fast: It returns the data you stored promptly

Affordable: It does not break the bank

Plenty: It holds everything you need

What we may instead get is a SLED!

Single, Large, Expensive Disk

RAID
Redundant Array of Inexpensive* Disks

* In industry, “inexpensive” has been replaced by “independent” :-)

Read about disk
scheduling algorithms

in class notes and
in Chapter 38 of

3 Easy Pieces

E Pluribus Unum
Implement the abstraction of a faster, bigger and more
reliable disk using a collection of slower, smaller, and more
likely to fail disks

different configurations offer different tradeoffs

Key feature: transparency

The Power of Abstraction™

to the OS looks like a single, large, highly performant and highly
reliable single disk (a SLED, hopefully with lower-case “e”!)

a linear array of blocks

mapping needed to get to actual disk

cost: one logical I/O may translate into multiple physical I/Os

In the box:

microcontroller, DRAM (to buffer blocks) [sometimes non-volatile
memory, parity logic]

Failure Model
RAID adopts the strong, somewhat unrealistic Fail-Stop
failure model (electronic failure, wear out, head damage)

component works correctly until it crashes, permanently

disk is either working: all sectors can be read and written

or has failed: it is permanently lost

failure of the component is immediately detected

RAID controller can immediately observe a disk has failed and
accesses return error codes

In reality, disks can also suffer from isolated sector failures

Permanent: physical malfunction (magnetic coating, scratches,
contaminants)

Transient: data is corrupted, but new data can be successfully
read from/written to sector

How to Evaluate a RAID

Capacity

what fraction of the sum of the storage of its
constituent disks does the RAID make available?

Reliability

How many disk faults can a specific RAID
configuration tolerate?

Performance

Workload dependent

RAID-0: Striping

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Stripe
Stripe

Stripe

Stripe

Spread blocks across disks using round robin

+ Excellent parallelism
can read/write from multiple disks

– Worst-case positioning time
 wait for largest across all disks

RAID-0: Striping

(Big Chunk Edition)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Stripe

Stripe

+ improve positioning time — decrease parallelism

Spread blocks across disks using round robin

RAID-0: Evaluation
Capacity

Excellent: N disks, each holding B blocks support the
abstraction of a single disk with NxB blocks

Reliability

Poor: Striping reduces reliability

Any disk failure causes data loss

Performance

Workload dependent, of course

We’ll consider two workloads

Sequential: single disk transfers S MB/s

Random: single disk transfer R MB/s

S >> R

RAID-0: Performance

Single-block read/write throughput

about the same as accessing a single disk

Latency

Read: T ms (latency of one I/O op to disk)

Write: T ms

Steady-state read/write throughput

Sequential: N x S MB/s

Random: N x R MB/s

RAID-1: Mirroring

0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

Each block is replicated twice

Read from any Write to both

RAID-1: Evaluation
Capacity

 Poor: N disks of B blocks yield (N x B)/2 blocks

Reliability

Good: Can tolerate the loss (not corruption!) of any one
disk

Performance

Fine for reads: can choose any disk

Poor for writes: every logical write requires writing to
both disks

suffers worst seek+rotational delay of the two writes

RAID-1: Performance
Steady-state throughput

Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes

Sequential Reads: as low as N/2 x S MB/s
Suppose we want to read

0, 1, 2, 3, 4, 5, 6, 7
0 0 1 1
2 2 3 3
4 4 5 5
6 6 7 7

RAID-1: Performance
Steady-state throughput

Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes

Sequential Reads: as low as N/2 x S MB/s

Random Writes: N/2 x R MB/s

Each logical Write involves two physical Writes

Random Reads: N x R MB/s

Reads can be distributed across all disks

Latency for Reads and Writes: T ms

0 0 1 1
2 2 3 3
4 4 5 5
6 6 7 7

Suppose we want to read
0, 1, 2, 3, 4, 5, 6, 7

Each disk only delivers half of his bandwidth:
half of its blocks are skipped!

RAID-4: Block Striped,
with Parity

Data disks Parity disk

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Stripe

Stripe

Stripe

Stripe

1 1
1

1

0
00

00

1 0
1

1

0
01

10

1 0
1

1

0
00

01

1 1
1

1

0
11

00

0
0

1

0 0
0 1

1 0

RAID-4: Block Striped,
with Parity

Data disks Parity disk

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Stripe

Stripe

Stripe

Stripe

1 1
1

1

0
00

00

1 0
1

1

0
01

10

1 0
1

1

0
00

01

1 1
1

1

0
11

00

0
0

1

0 0
0 1

1 0

Disk controller can identify faulty disk

single parity disk can detect and correct errors

RAID-4: Evaluation
Capacity

N disks of B blocks yield (N-1) x B blocks

Reliability

Tolerates the failure of any one disk

Performance

Fine for sequential read/write accesses and random
reads

Random writes are a problem!

RAID-4: Performance
Sequential Reads: (N-1) x S MB/s

Sequential Writes: (N-1) x S MB/s

compute & write parity block once for the full stripe

Random Read: (N-1) x R MB/s

Random Writes: R/2 MB/s (N is gone! Yikes!)

need to read block Bold from disk and parity block Pold

Compute Pnew = (Bold XOR Bnew) XOR Pold

Write back Bnew and Pnew

Every write must go through parity disk, eliminating any
chance of parallelism

Every logical I/O requires two physical I/Os at parity disk:
can at most achieve 1/2 of its random transfer rate (i.e. R/2)

Latency: Reads: T ms; Writes: 2T ms

RAID-5: Rotating Parity

(avoids the bottleneck)

Parity and Data distributed across all disks

0 1 2 3 P0

5 6 7 P1 4

10 11 P2 8 9

15 P3 12 13 14

P4 16 17 18 19

RAID-5: Evaluation
Capacity & Reliability

As in Raid-4

Performance

Sequential read/write accesses as in RAID-4

(N-1) x S MB/s

Random Reads are slightly better

N x R MB/s (instead of (N-1) x R MB/s)

Random Writes much better than RAID-4: R/2 x N/2

as in RAID-4 writes involve two operations at every disk:
each disk can achieve at most R/2

but, without a bottleneck parity disk, we can issue up to
N/2 writes in parallel (each involving 2 disks)

SSDs

Why care?

Require seek, rotate,
transfer on each I/O

Not parallel (one active
head)

Brittle (moving parts)

Slow (mechanical)

Poor random I/O (10s
of ms)

No seeks

Parallel

No moving parts

Random reads take 10s
of µs

Wears out!

HDD SSD

Flash Storage

To write 0

apply positive voltage to drain

apply even stronger positive
voltage to control gate

some electrons are tunneled into
floating gate

N

source

N

drain

Control gate

P-Type substrate

Floating gate

Bit stored here,
surrounded by an insulator

No charge = 1

Charge = 0

Fowler-Nordheim tunneling

Oxide

sidewall

Oxide

tunnel

Oxide/Nitride/Oxide

ONO inter-poly
dielectric (insulator)

To write 1

apply positive voltage to drain

apply negative voltage to control
gate

electrons are forced out of
floating gate into source

To read

apply voltage to control gate

apply voltage across source and
drain

measure current between source
and drain to determine whether
electrons in gate

if electrons in floating gate,
must apply higher voltage to
control gate to have current

measured current can encode
more than a single bit

+

+

The SSD

Storage Hierarchy

Cell
1 to 4

bits

Plane/Bank
Many blocks

(Several Ks)

Several banks that
can be accessed

in parallel

Flash ChipBlock
64 to 256

 pages

not to be confused
with a disk block

Page
2 KB to 8 KB

not to be
confused with

a VM page

Basic Flash Operations
Read (a page)

10s of µs, independent of the previously read page

great for random access!

Erase (a block)

sets the entire block (with all its pages) to 1 (!)

very coarse way to write 1s…

1.5 to 2 ms (on a fast single level cell)

Program (a page)

can change some bits in a page of an erased block to 0

100s of µs

changing a 0 bit back to 1 requires erasing the entire block!

Using Flash Memory

Need to map reads and writes to logical blocks to
read, program, and erase operations on flash

Flash Translation Layer (FTL)

Flash Flash

Flash

Flash

Flash

Memory

Flash

Controller

In
te

rf
ac

e
lo

gi
c

Caching and

Mapping tables

Control logicDevice interface

(logical blocks, page-sized)

From Flash to SSD

Flash Translation Layer

tries to minimize

write amplification: []

wear out: practices wear leveling

disturbance: when many reads occur from pages of the
same block, value of nearby cells can be affected

Flash

write traffic (bytes) to flash chips
write traffic (bytes) from client to SSD

File Systems

The File System
Abstraction

Addresses need for long-term information storage:

store large amounts of information

do it in a way that outlives processes (RAM will not do)

can support concurrent access from multiple processes

Presents applications with persistent, named data

Two main components:

files

directories

The File
A file is a named collection of data. In fact, it has
many names, depending on context:

i-node number: low-level name assigned to the file by the
file system

path: human friendly string

must be mapped to inode number, somehow

file descriptor

dynamically assigned handle a process uses to refer to i-node

A file has two parts

data – what a user or application puts in it

array of untyped bytes

metadata – information added and managed by the OS

size, owner, security info, modification time, etc.

The Directory

A special file that stores mappings between human-
friendly names of files and their inode numbers

Has its own inode, of course

Mapping may of course also apply
to human-friendly names of
directories and their inodes

directory tree

/ indicates the root

Users bin

lorenzo irene ls

Duc1000s.
pdf

/

Mount

Point

Mount

Mount: allows multiple
file systems on multiple
volumes to form a single
logical hierarchy

a mapping from some
path in existing file
system to the root
directory of the
mounted file system

USB

Volumes

/

Bin

Home

Lorenzo

Lorenzo’s

disk

Princess

Bride

Movies

/

Backup

USB Volume

The Abstraction Stack

Application

Library

File System

Physical Device

I/O systems are accessed through
a series of layered abstractions

The Abstraction Stack

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

I/O systems are accessed through a
series of layered abstractions

{

<latexit sha1_base64="0/T1Njel75jyvWQtdxjvdlXxCIc=">AAAB33icdVDLSgMxFL1TX7W+6mPnJlgEV8OMLdqdRRe6rGIf0JaSSTNtaCYzJBmhDl27EXGj4E/4Hf6Cy/6CX2Da6qI+Dlw4nHMuuSdexJnSjvNupebmFxaX0suZldW19Y3s5lZVhbEktEJCHsq6hxXlTNCKZprTeiQpDjxOa17/bOzXbqhULBTXehDRVoC7gvmMYG2kq2bSzuZc25kA/U9yJx+j89ed21G5nX1rdkISB1RowrFSDdeJdCvBUjPC6TDTjBWNMOnjLk0m9w3RvpE6yA+lGaHRRJ3J4UCpQeCZZIB1T/30xuJfXiPWfrGVMBHFmgoyfciPOdIhGpdFHSYp0XxgCCaSmQsR6WGJiTZfkjHVHTt/VHDzDvpNvqtXD223YBcvnVzpFKZIwy7swQG4cAwluIAyVICAD/fwBM8Wtu6sB+txGk1ZXzvbMAPr5RN8hY3A</latexit>

Fi
le

 S
ys

te
m
 A

PI
 a

nd
 P

er
fo

rm
an

ce
{

<latexit sha1_base64="0/T1Njel75jyvWQtdxjvdlXxCIc=">AAAB33icdVDLSgMxFL1TX7W+6mPnJlgEV8OMLdqdRRe6rGIf0JaSSTNtaCYzJBmhDl27EXGj4E/4Hf6Cy/6CX2Da6qI+Dlw4nHMuuSdexJnSjvNupebmFxaX0suZldW19Y3s5lZVhbEktEJCHsq6hxXlTNCKZprTeiQpDjxOa17/bOzXbqhULBTXehDRVoC7gvmMYG2kq2bSzuZc25kA/U9yJx+j89ed21G5nX1rdkISB1RowrFSDdeJdCvBUjPC6TDTjBWNMOnjLk0m9w3RvpE6yA+lGaHRRJ3J4UCpQeCZZIB1T/30xuJfXiPWfrGVMBHFmgoyfciPOdIhGpdFHSYp0XxgCCaSmQsR6WGJiTZfkjHVHTt/VHDzDvpNvqtXD223YBcvnVzpFKZIwy7swQG4cAwluIAyVICAD/fwBM8Wtu6sB+txGk1ZXzvbMAPr5RN8hY3A</latexit>

De
vi
ce

 A
cc

es
s

The Abstraction Stack

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

The Abstraction Stack

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

The Abstraction Stack

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Translates OS abstractions and hw
specific details of I/O devices

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

The Abstraction Stack

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Translates OS abstractions and hw
specific details of I/O devices

Control registers, bulk data transfer,
OS notifications

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

File System API
Creating a file

returns a file descriptor, a per-process integer that grants
process a capability to perform certain operations on the file

int close(int fd); closes the file

Reading/Writing

return number of bytes read/written

repositions file’s offset (initially 0, updates on reads and writes)

to offset bytes from beginning of file (SEEK_SET)

to offset bytes from current location (SEEK_CUR)

to offset bytes after the end of the file (SEEK_END)

int fd = open(“foo”, O_CREAT|O_RDWR|O_TRUNC, S_IRUSR|S_IWUSR);

path {
<latexit sha1_base64="I3xrejEZjtFheIrmieyu6hmbAX4=">AAAB33icdVDLSgMxFL1TX3V8VV26CRbB1TBji3ZhseDGZRX7gLaUTJppQzOTIckIZejajYgbBdf+jH8g/oZfYNrqoj4OXDiccy65J37MmdKu+25lFhaXlleyq/ba+sbmVm57p65EIgmtEcGFbPpYUc4iWtNMc9qMJcWhz2nDH55P/MYNlYqJ6FqPYtoJcT9iASNYG+mqnXZzec9xp0D/k/zZRzl+ebPL1W7utd0TJAlppAnHSrU8N9adFEvNCKdju50oGmMyxH2aTu8bowMj9VAgpJlIo6k6l8OhUqPQN8kQ64H66U3Ev7xWooNSJ2VRnGgakdlDQcKRFmhSFvWYpETzkSGYSGYuRGSAJSbafIltqrtO4bjoFVz0m3xXrx85XtEpXXr5yinMkIU92IdD8OAEKnABVagBgQDu4BGeLGzdWvfWwyyasb52dmEO1vMnY2CM5A==</latexit>

{
<latexit sha1_base64="I3xrejEZjtFheIrmieyu6hmbAX4=">AAAB33icdVDLSgMxFL1TX3V8VV26CRbB1TBji3ZhseDGZRX7gLaUTJppQzOTIckIZejajYgbBdf+jH8g/oZfYNrqoj4OXDiccy65J37MmdKu+25lFhaXlleyq/ba+sbmVm57p65EIgmtEcGFbPpYUc4iWtNMc9qMJcWhz2nDH55P/MYNlYqJ6FqPYtoJcT9iASNYG+mqnXZzec9xp0D/k/zZRzl+ebPL1W7utd0TJAlppAnHSrU8N9adFEvNCKdju50oGmMyxH2aTu8bowMj9VAgpJlIo6k6l8OhUqPQN8kQ64H66U3Ev7xWooNSJ2VRnGgakdlDQcKRFmhSFvWYpETzkSGYSGYuRGSAJSbafIltqrtO4bjoFVz0m3xXrx85XtEpXXr5yinMkIU92IdD8OAEKnABVagBgQDu4BGeLGzdWvfWwyyasb52dmEO1vMnY2CM5A==</latexit>

flags permissions

ssize_t read (int fd, void *buf, size_t count);

ssize_t write (int fd, void *buf, size_t count);

off_t lseek (int fd, off_t offset, int whence);

File System API
Writing synchronously

flushes to disk all dirty data for file referred to by fd
if file is newly created, must fsynch also its directory!

Getting file’s metadata

stat() , fstat() — return a stat structure

int fsynch (int fd);

 struct stat {
 dev_t st_dev; /* ID of device containing file */
 ino_t st_ino; /* inode number */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device ID (if special file) */
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for filesystem I/O */
 blkcnt_t st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last status change */
};

retrieved from
file’s inode

on disk, per-file
data structure

may be cached
in memory

Old Friends

Remember fork()?
int main(int argc, char *argv[]){

int fd = open(“file.txt”, O_RDONLY);
assert (fd >= 0);
int rc = fork();
if (rc == 0) { /* child */

rc = lseek(fd, 10, SEEK_SET);
printf(“child: offset %d\n”, rc);

} else if (rc > 0) { /* parent */
(void) wait(NULL);
printf(“parent: offset %d\n”,

(int) lseek(fd, 10, SEEK_CUR));
}
return 0;

}

What does this code print?
child: offset 10
parent: offset 20

Parent

Child

Open File

Table

File
Descriptors

File
Descriptors

refcnt: 2
off: 20
inode 52874

7

7

