Previously, on CS4410...

The Working Set Model

@ Choose A page references as WS sliding window
o frack WS for the last A page references

® WSS, = # of distinct pages referenced by jn latest
A references
o A too small does not cover locality

0 A foo large covers many localities

® Thrashing if YWSS; > # frames

o if so, swap out one of the processes; free its frames

@ If enough free frames, increase degree of
multiprogramming

WS Page Replacement

=4

Time

10

11

12

13

Pages in Memory

Trace

Page a

Page b |
Page c |

©
o
(o)
®
Q.

Page e

Faults

WS Page Replacement

=4

Time o 23 14Db | 6 10 | 11 |12 |13
Trace
5. Pagea
S
P b
§ age
= Page ¢
w
O Paged
o
Page e
Faults X}

unmapping e, since not referenced in
the last 4 references 5

WS Page Replacement
=l

Page a

Page b

Page ¢

Page d

Pages in Memory

Page e

Faults

WS Page Replacement

A\

A

Time

10

11

12

13

Pages in Memory

Trace
Page a
Page b
Page ¢

b
o
(o]
®
Q.

Page e

Faults

7

WS Page Replacement

=4

Time

A

5

6

10

11

12

13

Pages in Memory

Trace
Page a
Page b
Page ¢

2
o

(o]
®
Q.

Page e

Faults

i

C

X todle il el

o!

&

b

WS Page Replacement

=4

9 |10

Time O diirdal 3P aet5 | 6 11 (12 | 13

Trace eldd al c| c| djihb
> Page a ‘ ‘
o

; i

§ Page
= Page ¢ ‘
(Vo)
% Page d |
% Page e ‘ L

Faults X| X| X| X[

WS Page Replacement
=l

56

Pages in Memory

Time Oub il 3° 174 4 9 12 113
Trace efwd| al cl| c| d t bl ¢| e| c| je

Page a rr ‘

Page b [.

Page ¢]:]:]:]: B

b

g &
(o] (o]
® ®
\M) Q.

Faults

X| X[X| X|

N

X

L] d
| | HEE |

~

W

10

NE

WS Page Replacement

=4

Time O b diviid o 30451 6 L g Sl 10 [1811721 13
b
Trace efdu - al c| c{ diitbhk c| el Cisel |d
> Page a ‘ T ‘
o
b &
§ Page o
= . L
S, Poge d .
B .. | | HEEEN |
Faults XX X X S R] X

11

WS Page Replacement
=l

Time ol1]|2|3|4|5]|6|718|9]|10|1(12]13

Pages in Memory

Trace edaccdbclecead

Page a

Page b

Page ¢

U
o
(o]
®
o

Page e

Faults X| X

WS Page Replacement

=4

Time

10

11

12

Pages in Memory

Trace
Page a
Page b
Page ¢

o
o

(o]
)
o

Page e

Faults

XX X X[e X

N/

13

Approximating the
Working Set

Keep a k-bit tag in each page table entry (say, 2 bits)

Set a timer interrupt to fire every A/k page references

o if A =10,000, then every 5000 references

On timer interrupt

o Shift tag right one bit

o Copy REF bit in tags leftmost bit and clear REF Note: Must scan
0 Add to a free list any page whose tag is zero B e

When a frame is needed, use the free list (check also REF bit!)

o if free list is empty, pick any frame

Working Sets and
Page Fault Rates

@ As the working set changes, the page
fault rate increases

0 a steep increase in the page fault
rate indicates a shift in locality,
which may require a different WS &

@ Idea: Change the number of frames

allocated
to a process in response to changes to its Page Fault rate

o as long as the working sets of all processes currently in

memory does not exceed the size of physical memory, no
thrashing

PFF (Page Fault .
Frequency) Algri'l'hm o

PFF Page Replacement
.

Time Ol je2l 3 | 4954 6717 | 8| %G 112113

Trace

Page a

Page b

Page ¢

Page d

Pages in Memory

Page e

Faults

tcurrent o tla o) 1 1 1 3 2 3 1

I/0O Devices

You Need to
Get Out More!

® How does a computer connect
with the outside world?

I/0 Architecture

Memory Bus

General I/0 Bus
< » (pcI)

Peripheral I/O Bus
‘ » (SCSI, SATA USB)

Interacting
with a Device

Interacting
with a Device

Interface

; (what the OS sees)

Internals

(what is needed to
implement the abstraction)

Interacting
with

a Device

Command

Registers Status

Data

Microcontroller

Internals

Other device (what is needed to
specific chips implement the abstraction)

Memory

Interacting
with a Device

Registers Status Command Data

" Internals

Other device (what is needed to
specific chips implement the abstraction)

@ OS controls device by
reading/writing registers

while (STATUS == BUSY)

; // wait until device is not busy
write data to DATA register
write command fo COMMAND register

// starts device and executes command
while (STATUS == BUSY)

; // wait until device is done with request

Tuning It Up

@ CPU is polling

0 use interrupts

0 run another process while
device is busy

o what if device returns
very quickly?

@ CPU is copying all the
data to and from DATA

o use Direct Memory Access
(DMA)

while (STATUS == BUSY)

; // wait until device is not busy
write data to DATA register
write command fo COMMAND register

// starts device and executes command

while (STATUS == BUSY)

; // wait until device is done with request

From interrupt-driven 1/0
to DMA

@ Interrupt driven I/0
o Device ¢ CPU 4—p RAM

forsv=1. 1)
» CPU issues read request

» device interrupts CPU with
data

» CPU writes data to memory

NN NNNE

From interrupt-driven 1/0

@ Interrupt driven I/0
o Device ¢ CPU 4—p RAM

to DMA

forsv=1. 1) %

P

P

CPU issues read request >

device interrupts CPU with

data 4

CPU writes data to memory

@ + Direct Memory Access
o Device ¢———p RAM

CPU sets up DMA request

Device puts data on bus &
RAM accepts it

Device interrupts CPU
when done

A
H

Communicating
with devices

@ Explicit I/0 instructions (privileged)

0 in and out instructions in x86

@ Memory-mapped 1/0
0 map device registers to memory location

o use memory load and store instructions to read/
write to registers

How can the OS handle
a multitude of devices?

@ Abstraction!

o Encapsulate device specific
interactions in a device driver

o Implement device neutral
interfaces above device drivers

@ Humans are about 70%
water...

o ..0Ss are about 70% device
drivers!

File System Stack (simplified)

Application

SR

File System

Block Cache

Generic Block Layer

Device Driver [SCSI, ATA, etc]

Memory-mapped 1/0, DMA, Interrupts

Physical Device

User

Kernel

Persistent Storage

Storage Devices

@ We focus on two types of persistent storage

o magnetic disks
» servers, workstations, laptops
o flash memory

» smart phones, tablets, cameras, laptops

@ Other exist(ed)

o tapes
o drums

o clay tablets

Magneftic disk

@ Store data magnetically on thin metallic film
bonded tfo rotating disk of glass, ceramic, or
aluminum

Disk Drive Schematic

data on a track
can be read
without moving
arm

track skewing
staggers logical
address O on
adjacent one to
account for time
to move head

Typically 512 bytes
spare sectors added for fault tolerance

Block/Sector

set of tracks on different

Spindle

surfaces with same track index \

2018: 4200-15000 RPM

reads by sensing a magnetic field
writes by creating one

floats on air cushion created by
spinning disk

|

Head

Platter

thin cylinder that holds
magnetic material

each platter has two surfaces

Disk Read/Write

@ Present disk with a sector address
o Old: CHS = (cylinder, head, sector)
o New abstraction: Logical Block Address (LBA)

» linear addressing O...N-1

@ Heads move to appropriate track
o Seek

n Settle

@ Appropriate head is enabled Disk access time:

@ Wait for sector to appear under head

o rotational latency

@ Read/Write sector

o transfer time

Disk Read/Write

@ Present disk with a sector address
o Old: CHS = (cylinder, head, sector)
o New abstraction: Logical Block Address (LBA)

» linear addressing O...N-1

@ Heads move to appropriate track
o seek (and though shalt approximately find)
o settle (fine adjustments)

p
@ Appropriate head is enabled Disk access time:
@ Wait for sector to appear under head seek time +
o rotational latency
@ Read/Write sector
o transfer ftime
.

o

D

o

o

o

Disk Read/Write

Present disk with a sector address
o Old: CHS = (cylinder, head, sector)
o New abstraction: Logical Block Address (LBA)

» linear addressing O...N-1

Heads move to appropriate track
o seek (and though shalt approximately find)
o settle (fine adjustments)

Appropriate head is enabled

Wait for sector to appear under head

o rotational latency

Read/Write sector

o transfer time

Disk access time:

seek time +

rotation time +

o

D

o

o

o

Disk Read/Write

Present disk with a sector address
o Old: CHS = (cylinder, head, sector)
o New abstraction: Logical Block Address (LBA)

» linear addressing O...N-1

Heads move to appropriate track
o seek (and though shalt approximately find)
o settle (fine adjustments)

Appropriate head is enabled

Wait for sector to appear under head

o rotational latency

Read/Write sector

o transfer time

Disk access time:

seek time +
rotation time +

transfer time

Seek time:
A closer look

@ Minimum: time to go from one frack to the next
o 0.3-1.5 ms

@ Maximum: time fo go from innermost to outermost track

o more than 10ms; up to over 20ms

@ Average: average across seeks between each possible pair
of tracks

o approximately time to seek 1/3 of the way across disk

See notes for how that time is computed!

Seek time:
A closer look

@ Minimum: time to go from one frack to the next
o 0.3-1.5 ms

@ Maximum: time fo go from innermost to outermost track
o more than 10ms; up to over 20ms

@ Average: average across seeks between each possible pair
of tracks

o approximately time to seek 1/3 of the way across disk

How did we get that?

@ To compute average seek time, add distance
between every possible pair of tracks and divide
by total number of pairs

o assuming N tracks, N pairs, and sum of distances is

N N T
Z Z [z —y| which we compute as / / lx — y|dy dx
z=0 Jy=0

=0 y=0

How did we get that?

@ To compute average seek time, add distance
between every possible pair of tracks and divide
by total number of pairs

o assuming N tracks, N pairs, and sum of distances is

N N T
Z Z [z —y| which we compute as / / lx — y|dy dx
z=0 Jy=0

=0 y=0
N

(2 =vyldy / (y — z)dy

y=x

x

o The inner integral expands ’ro/

y=0

which evaluates to z°/2 4+ (N?/2 — xN + 2?/2)

How did we get that?

@ To compute average seek time, add distance
between every possible pair of tracks and divide
by total number of pairs

o assuming N tracks, N pairs, and sum of distances is

N N MR
ZZ [z —y| which we compute as / / lx — y|dy dx
z=0 Jy=0
N

(2 =vyldy / (y — z)dy

Yy=x

x

o The inner integral expands ’ro/

y=0

which evaluates to z*/2 + (N?/2 — zn + z°/2)
N

o The outer integral becomes / @ /2 N)dz = N°/3
=0

which we divide by the number of pairs to obtain N/3

Seek time:
A closer look

@ Minimum: time to go from one frack to the next
o 0.3-1.5 ms

@ Maximum: time fo go from innermost to outermost track
o more than 10ms; up to over 20ms

@ Average: average across seeks between each possible pair
of tracks
o approximately time to seek 1/3 of the way across disk

o time to move from track 2 on one
surface to the same track on a different surface

D0 range similar to minimum seek time

Rotation ftime:
A closer look

@ Today most disk rotate at 4,200 to 15,000 RPM

o = 15ms to 4ms per rotation

o good estimate for rotational latency is half that amount

@ Head starts reading as soon as it seftles on a track

o track buffering to avoid “shoulda coulda” if any of the
sectors flying under the head turn out to be needed

Transfer time:
A closer look

® Surface transfer time

o Time to transfer one or more sequential sectors to/
from surface after head reads/writes first sector

0 Much smaller than seek ftime or rotational latency
» 512 bytes at 100MB/s = 5us (0.005 ms)
o Lower for outer tracks than inner ones

» same RPM, but more sectors/track: higher bandwidth!

® Host transfer time

o time to transfer data between host memory and disk
buffer

> 60MB/s (USB 2.0); 640 MB/s (USB 3.0); 25.GB/s (Fibre
Channel 256GFC)

Disk Buffer

@ Small cache [("Track buffer”, 8 to 16 MB]
holds data

0 read from disk
0 about to be written to disk

@ On write

o write back (return from write as soon as
data is cached)

o write through (return once it is on disk)

Computing I/0 time

TI/O s Tseek i Trotation q Ttransfe’r

@ The rate of 1/0 is computed as

Example:
Toshiba MK3254GSY
T S—

Platters/Heads
Capacity 320GB
| eerformance |
Spindle speed 7200 RPM
Avg. seek time R/W 10.5/12.0 ms
Max. seek time R/W 19 ms
Track-to-track 1 ms
Surface transfer time 54-128 MB/s
Host transfer time 375 MB/s
Buffer memory 16MB
| eowr]
Typical 16.35 W
Idle 11.68 W

500 Random Reads

® Workload

o 500 read requests, randomly chosen sector

Platters/Heads 2/4 o served in FIFO order
Capacity 320GB

@ How long to service them?

o 500 times (seek + rotation + transfer)

Spindle speed 7200 RPM
Avg. seek time R/W 10.5/12.0 ms o seek time: 10.5 ms (avg)
Max. seek time R/W 19 ms o rofation time:
.
Surface transfer time 54-128 MB/s e L G
Host transfer time 375 MB/s A e
Buffer IR 16MB » at least 54 MB/s
_ > 512 bytes transferred in (.5/54,000) seconds = 9.26us
Typical 16.35 W o Total time:
Idle 11.68 W » 500 x (10.5 + 4.15 + 0.009) ms ~ 7.33 sec

Ryjo = 3WXEXI0CMB _ 034 MB/s

500 Sequential Reads

_ .

o 500 read requests for sequential sectors on the
Platters/Heads ol
_Capacﬂry SoCE o served in FIFO order
Spindle Ered 7200 RPM @ How long to service them?
Avg. seek time R/W 10.5/12.0 ms o seek + rotation + 500 times transfer
Max. seek time R/W 19 ms 0 7 seek time: IO S)
rotation time:
Track-to-track 1 ms e RO %
> 4.15 ms, as before
Surface transfer time 54-128 MB/s :
o transfer time
Host transfer time 375 MB/S > outer track: 500 x (.5/128000) = 2ms
Buffer memory 16MB > inner track: 500 x (.5/54000) seconds = 4.6ms
| eower] > Total fime is between:
Typica[16.35 W » outer track: (2 + 4.15 + 10.5) ms = 16.65 ms
Idle 11.68 W Rpjp = 3%0axl0 MB _ 1503 MB/s

> inner track: (4.6 + 4.15 + 10.5) ms = 19.25 ms

Ryjo = B0XSX10ME _ 19 99 MB/s

Disk Head Scheduling

@ In a multiprogramming/time sharing environment, a
queue of disk I/Os can form

(surface, track, sector)

—‘

@ OS maximizes disk I/0 throughput by minimizing
head movement through disk head scheduling

o and this time we have a good sense of the length of
the task!

FCFS

@ Assume a queue of request exists to read/write
tracks

--| 83| 72|14 |147]| 16 |150] and the head is on track 65

015 25 50 68475 100 125 150

ORI :
e

FCFS scheduling results in disk head moving 550 fracks

and makes no use of what we know about the length of the tasks!

SSTF:
Shortest Seek Time First

@ Greedy scheduling

Rearrange queue from: =«===|83|72]14 |147| 16 |150

to: wene| 14|16 |150|147] 83 | 72

8525 S 1) 25 50 65 wiih 100 125 150

ORINNIIEIE .

U\U\JU/‘

/

Head moves 221 tracks BUT 1 OS knows blocks, not
tracks (easily fixed)

o starvation

SCAN Scheduling
"Elevator”

@ Move the head in one direction unftil all requests
have been serviced, and then reverse

0 sweeps disk back and forth

Rearrange queue from: =nxe| 83|72 14 |147] 16 [150
to: ===ul150| 147 83|72 | 14| 16
0 15 25 50 65 75 100 125 150

oI --
L

Head moves 187 tracks.

C-SCAN scheduling

@ Circular SCAN

o sweeps disk in one direction (from outer to inner track),
then resets to outer track and repeats

O 15 25 50 abae... 15 100 125 150

@]
\v\//

® More uniform wait time than SCAN

0 moves head to serve requests that are likely
to have waited longer

OS Outsources
Scheduling Decisions

@ Selecting which track to serve next should include
rotation time (not just seek time!)

o SPTF: Shortest Positioning Time First

@ Hard for the OS to estimate rotation time accurately

o Hierarchical decision process
» OS sends disk controller a batch of “reasonable” requests

» disk controller makes final scheduling decisions

Back to Storage...

What qualities we want from storage?
@ Reliable: It returns the data you stored
@ Fast: It returns the data you stored promptly

® Affordable: It does not break the bank
@ Plenty: It holds everything you need

What we may instead get is a SLED! i

)

@ Single, Large, Expensive Disk

RAID

Redundant Array of Inexpensive® Disks

* In industry, “inexpensive” has been replaced by “independent” :-)

E Pluribus Unum

@ Implement the abstraction of a faster, bigger and more
reliable disk using a collection of slower, smaller, and
more likely to fail disks

o different configurations offer different tradeoffs

o Key feature: transparency
o The Power of Abstraction™

o to the OS looks like a single, large, highly performant and
highly reliable singie disk (a SLED, hopefully with lower-case “e”!)
— a linear array of blocks
— mapping needed to get to actual disk
— cost: one logical I/0 may translate into multiple physical I/Os

@ In the box:

o microcontroller, DRAM (to buffer blocks) [sometimes non-
volatile memory, parity logic]

Failure Model

@ RAID adopts the strong, somewhat unrealistic Fail-Stop
failure model (electronic failure, wear out, head damage)

o component works correctly until it crashes, permanently

» disk is either working: all sectors can be read and written

> or has failed: it is permanently lost

o failure of the component is immediately detected

» RAID controller can immediately observe a disk has failed and
accesses return error codes

@ In reality, disks can also suffer from isolated sector failures

o Permanent: physical malfunction (magnetic coating, scratches,
contaminants)

o Transient: data is corrupted, but new data can be successfully
read from/written to sector

How to Evaluate a RAID

@ Capacity

o what fraction of the sum of the storage of its
constituent disks does the RAID make available?

o Reliability

o How many disk faults can a specific RAID
configuration tolerate?

@ Performance
o Workload dependent

RAID-0: Striping

Spread blocks across disks using round robin

o
CEE=—
Stripe 0 1 2 3 1
'S’rripe 4 5 6 7
Stripe 8 9 10 11
Stripe 12 13 14 15
+ Excellent parallelism - Worst-case positioning time
» can read/write from multiple disks > wait for largest across all disks

RAID-0: Striping
(Big Chunk Edition)

Spread blocks across disks using round robin

S — S S e
— CE==—T CE==—==T SE==—T

'Stripe 0 2 A
| 1 3 5 7
Stripe 8 10 12 14
9 11 13 15
+ improve positioning time — decrease parallelism

RAID-0: Evaluation

@ Capacity

o Excellent: N disks, each holding B blocks support the
abstraction of a single disk with NxB blocks

@ Reliability
0 Poor: Striping reduces reliability

» Any disk failure causes data loss

@ Performance
o Workload dependent, of course
o We'll consider two workloads
» Sequential: single disk transfers S MB/s

> Random: single disk transfer R MB/s
p S 5> R

RAID-0: Performance

@ Single-block read/write throughput

0 about the same as accessing a single disk

@ Latency
o Read: T ms (latency of one 1/0 op to disk)
o Write: T ms

o Steady-state read/write throughput
o Sequential: N x S MB/s
o Random: N x R MB/s

RAID-1: Mirroring

Each block is replicated twice

|
\ [/
\ /
o
A\ ;
\ 4
—

£
i 4

0
2
6

\lémw-—-
|

0
2
4
6

Read from any Write to both

RAID-1: Evaluation

@ Capacity
o Poor: N disks of B blocks vyield (N x B)/2 blocks
@ Reliability

o Good: Can tolerate the loss (not corruption!) of any one
disk

@ Performance
o Fine for reads: can choose any disk

o Poor for writes: every logical write requires writing fo
both disks

» suffers worst seek+rotational delay of the two writes

RAID-1: Performance

@ Steady-state throughput
o Sequential Writes: N/2 x S MB/s
» Each logical Write involves two physical Writes

o Sequential Reads: as low as N/2 x S MB/s

Suppose we want to read
0,1, 2, 3456 7

o | v O
o v O

1 |
3 3
5 5
7 7

RAID-1: Performance

@ Steady-state throughput
o Sequential Writes: N/2 x S MB/s

» Each logical Write involves two physical Writes

o Sequential Reads: as low as N/2 x S MB/s

Suppose we want to read

0,1,2 3 4% 8 7
- 3 - Each disk only delivers half of his bandwidth:

half of its blocks are skipped!

o Random Writes: N/2 x R MB/s

» Each logical Write involves two physical Writes
o Random Reads: N x R MB/s

» Reads can be distributed across all disks

@ Latency for Reads and Writes: T ms

RAID-4: Block Striped,
with Parity

Data disks Parity disk

ST SRy ST STy | S

‘S/’— ‘\\—_!— QS/’, == ‘\\—_!, = \\\—_!, —
ES’rripe 0] 1) 3 PO
;S’rripe 4 5 6 7 P1
| Stripe 8 9 10 11 p2
Stripe 12 13 14 15 P3
1791 0 1/0/0 1/0]|0 L R0 0o|o]|o0
i) 1516 1 0[1]0 L skl 0|01
0 0|1 0 0|0 |1 0

RAID-4: Block Striped,
with Parity

Data disks Parity disk

S ——— S————n S ———— s e ———

‘S/’— ‘\\—_!— QS/’, == ‘\\—_!, = \\\—_!, —
ES’rripe 0] 1) 3 PO
;S’rripe 4 5 6 7 P1
| Stripe 8 9 10 11 p2
Stripe 12 13 14 15 ok
| R L 0 100 11010 10 P00
1|0 1|10 0O|1]0 Ll OIS0
0|0 |1 o1 1 1(0 |1 001 =10

Disk controller can identify faulty disk
D single parity disk can detect and correct errors

RAID-4: Evaluation

@ Capacity
o N disks of B blocks yield (N-1) x B blocks

@ Reliability

0 Tolerates the failure of any one disk

® Performance

o Fine for sequential read/write accesses and random
reads

o Random writes are a problem!

RAID-4: Performance

o Sequential Reads: (N-1) x S MB/s
o Sequential Writes: (N-1) x S MB/s

4

compute & write parity block once for the full stripe

o Random Read: (N-1) x R MB/s
o Random Writes: R/2 MB/s (N is gone! Yikes!)

P

P

P

need to read block Bo4 from disk and parity block Pod
Compufe pnew - (Bold XOR Bnew) XOR pold
Write back Bnew and Prew

Every write must go through parity disk, eliminating any
chance of parallelism

Every logical I/O requires two physical I/Os at parity disk:
can at most achieve 1/2 of its random transfer rate (i.e. R/2)

@ Latency: Reads: T ms; Writes: 2T ms

RAID-5: Rotating Parity
(avoids the bottleneck)

Parity and Data distributed across all disks

S | e

TEEETC | emEET- | SSEEmsL JEEE=SL SEEE==-
‘\@l = ‘S/’, — \\@, — \\@, — \S/’, —

0 1 > 3 PO
Sel 6 7 p1 4
10 11 o> 8 9
15 P3 e 13 14
P4 16 17 18 19

RAID-5: Evaluation

@ Capacity & Reliability
o As in Raid-4
@ Performance
o Sequential read/write accesses as in RAID-4
> (N-1) x S MB/s
o Random Reads are slightly better
> N x R MB/s (instead of (N-1) x R MB/s)

o Random Writes much better than RAID-4: R/2 x N/2

» as in RAID-4 writes involve two operatfions at every disk:
each disk can achieve at most R/2

» but, without a bottleneck parity disk, we can issue up to
N/2 writes in parallel (each involving 2 disks)

