Previously, on CS4410...

A really small
VA space

@ 8 bits! How large is the

address space?

@ Consider the following “flat”

address: 10000011 (131 in

decimal)

A really small
VA space

@ 8 bits! How large is the

address space?

@ Consider the following “flat”

address: 10000011 (131 in

decimal)

A really small
VA space

@ 8 bits! How large is the

address space?

@ Consider the following “flat”

address: 10000011 (131 in

decimal)

o Now, lets consider the address N

through the lens of paging

=
> O

A really small
VA space

@ 8 bits! How large is the

address space?

@ Consider the following “flat”

address: 10000011 (131 in

decimal)

o Now, lets consider the address N

through the lens of paging

=
> O

How many pages? How large is each page?

A really small
VA space

@ 8 bits! How large is the

address space?

@ Consider the following “flat”

address: 10000011 (131 in

decimal)

o Now, lets consider the address N

through the lens of paging

=
> O

How many pages? How large is each page?

A really small
VA space

@ 8 bits! How large is the 0

address space?

@ Consider the following "flat”

address: 10000011 (131 in

decimal)

8
o Now, lets consider the address .

through the lens of paging

12

=
> O

A really small
VA space

@ 8 bits! How large is the 0

address space?

@ Consider the following "flat”

address: 10000011 (131 in

decimal)

8
o Now, lets consider the address .

through the lens of paging

12

P o

~

IGIGIG] oo 1 1

Still finding the same byte! (pheeeewww....)

&

A really small
VA space

What about the page table?

o 16 entries

Say each table entry takes 4

bytes

o page table occupies 64 bytes (2
pages)

Suppose process uses only
pages 8 and 9

12

15

A really small
VA space

What about the page table?

a

16 entries

Say each table entry takes 4
bytes

a

page table occupies 64 bytes (2
pages)

Suppose process uses only
pages 8 and 9

a

can we be more efficient?

12

15

A really small
VA space

) M/’ _____________________________

(o e S T -
I —

e

@ Materialize only the portion of the page\‘
table that is needed 12 e
@ Out index must be present in its entirety e

o in case the process needs more pages!

A really small
VA space

Pl D3 0]
= = ——

12 =t

A really small
VA space

Pl D3 0]
= = ——

A really small
VA space

Pl D3 0]
= = ——

1/ofgi8lo/o1]1

A really small
VA space

Pl D3 0]
= = ——

1 0fgi8lolo|1]1

Still inding the same byte!

(pheeeewww....) g

Multi-level Paging

Structure virtual
address space as a tree

Virtual address of a

SUN SPARC (1987)
Pl R 0]

255

PTBR

8

¢

16K
8K

4K

Example

10 bits 8 bits 6 bits 8 bits

{ o e B, i, W W

@ What is the page size?

86

Example

10 bits 8 bits 6 bits 8 bits

S . - A AL
— ~r =~ ~ —

® What is the page size? Page size is 256 bytes (28)

® What is the Page Table size for a process that uses 256
contiguous KB of its VA space starting at address 07
[Assume each PTE is 2 bytes]

D if we used a linear representation of the page table:

87

Example

10 bits 8 bits 6 bits 8 bits

S . - A AL
— ~r =~ ~ —

® What is the page size? Page size is 256 bytes (28)

® What is the Page Table size for a process that uses 256
contiguous KB of its VA space starting at address 07
[Assume each PTE is 2 bytes]

D if we used a linear representation of the page table:

» Page Table has 224 enftries

88

Example

10 bits 8 bits 6 bits 8 bits

® What is the page size? Page size is 256 bytes (28)

® What is the Page Table size for a process that uses 256
contiguous KB of its VAS starting at address 0? [Assume
each PTE is 2 bytes]

D if we used a linear representation of the page table:
» Page Table has 224 enftries

> PT Size: 224 x 2 bytes = 225 bytes = 32MB

89

Example

10 bits 8 bits 6 bits 8 bits

e) N . A,

224 24
M page

® What if we use a tree? -

B

0 We still need to account for 224 pages... =

i

o ..but we are going to partition the PT =

in a sequence of chunks, each with 2¢ 0

entries
Page Table

Example

10 bits 8 bits 6 bits

e) N .

@ What is we use a tree?
0 We still need to account for 224 pages...

o ..but we are going to partition the PT
in a sequence of chunks, each with 2¢
entries. How many such chunks?

o
N

o
DN

o

n

o

n

o

[0P

224

Example

10 bits 8 bits 6 bits 8 bits

— $IEF S . —

218 224

218 =

@ What is we use a tree? =i E
0 We still need to account for 224 pages... 26 =

o ..but we are going to partition the PT Zr E

in a sequence of chunks, each with 2¢ i

entries

e[0D

o we'll need an index with 2!8 entries...

o ..which we'll partition in chunks of 28
entries

Example

10 bits 8 bits

— $IEF S

6 bits

8 bits

® What is we use a tree?

a

O

We still need to account for 224 pages...

..but we are going fo partition the PT
in a sequence of chunks, each with 2¢
entries

we'll need an index with 218 entries...

..which we'll partition in chunks of 28
entries. How many such chunks?

218

o
N

o
DN

o

n

o

n

o

[0P

224

Example

10 bits 8 bits

— $IEF S

6 bits

8 bits

® What is we use a tree?

a

O

We still need to account for 224 pages...

..but we are going fo partition the PT
in a sequence of chunks, each with 2¢
entries

we'll need an index with 218 entries...

..which we'll partition in chunks of 28
entries

We'll need an index of 210

218

o
N

o
DN

o

n

o

n

o

[0P

224

Example

@ What is we use a tree?

O

a

entries

entries

10 bits 8 bits 6 bits 8 bits

218

210
| L 25
u: 8 R, -
We still need fo account for 224 pages... \-_78% 26
..but we are going to partition the PT Ze
in a sequence of chunks, each with 2¢ 26
we'll need an index with 218 entries... 210
..which we'll partition in chunks of 28 :
We'll need an index of 210 = |
28 | :

224

Example

10 bits 8 bits 6 bits 8 bits

— N . —

218 224
26— I
? 210
@ Are we better off: rESERG il
0 The number of PT entries now is \-_78% 26 =)
(26x218)+(210x28)+210 » 224 11 i o =
o But we only need the portion of the free 26 =
needed to map the first 1K (219) pages! : :
210 é
O i
[

Example

10 bits 8 bits 6 bits 8 bits

218 D24
26—

@ How many chunks of size 2¢ are needed o5 | ik
to hold 210 PTEs of consecutive pages i
starting at 0? \Tﬁ 2 1.

0 210/26 = 24 =16 26
210
S OE e —

Example

10 bits 8 bits 6 bits 8 bits

218

R

o3

N
~

~

-

@ How many chunks of size 2¢ are needed 28— =
to hold 210 PTEs of consecutive pages 5
starting at 0? zE f

o 210/26 = 24 =16

b

B

¥, 7

210

Example

10 bits 8 bits 6 bits 8 bits

518 . ool
1 e e)., 1)
@ How many chunks of size 2¢ are needed cEmE }2‘1 2°
to hold 210 PTEs of consecutive pages 2 -
starting at 0? \28E Bl e b

0 210/26 = 24 = 16 : \.

@ How many chunks of size 28 are needed :
to hold pointers to 16 pink chunks? 2210

i]

B

Example

10 bits 8 bits 6 bits 8 bits

ol18 2%
s 26 \ .)
@ How many chunks of size 2¢ are needed cEmE }2 1 2°
to hold 210 PTEs of consecutive pages T 2 -
starting at 0? L2 i A

o 210/26 = 24 =16

@ How many chunks of size 28 are needed :
to hold pointers to 16 pink chunks? 2210

i]

@ So, if each PTE is 2 bytes, the PT takes

02 X (1x1024 +1x 256 + 16 x 64) = 4608 bytes E
L

Getting sloooower

@ Every new level of paging

0 reduces the memory overhead for computing
the mapping function...

D .. but increases the time necessary to perform
the mapping function

101

Caching

@ Keep the results of recent VA-PA translations
in a structure called Translation Lookaside
Buffer (TLB)

0 TLB is a cache for page-to-frame mappings

Speeding things up:
The TLB

Memory Physical
Exception Memory
: page # frame # Access
gy TLB hit |
. ..)@ oV
-] > ([T -
RS 2O : i
Heou B {
Beep(Snees
TLB :
TLB miss @
L sl Tl hai s e
p
EAT: Cost(TLB lookup) +
PTBR J Cost(full ’rranslc.l’rlon).x(l —a)
103 (a: hit ratio)

Paﬁe Table Base Reﬁis’rer

Address Translation
with TLB

Virtual ; Virtual
Address Address
............... PETTPPTTPPPPEPTPETPPTPTPTPPIPPPPTPITTY = TLB JCCCITETPETREVERTEE 3 V /T CITEETEITETREITE = Page Invalid - » Excepfion
Table
4 Hit
5 Valid
\ v
Frame Fra_me
: i b SRR B a
Offset é} Physical
L R S L e RS SRR - s G R e S Pi 4 b, >
Physical Memory
Address
Dc.:l’ra
A Access TLB before accessing memory! i

R T il e o S |

Hit and Miss

@ The TLB is small; it cannot hold all PTEs

» it can be fast only if it is small!

0 Some franslations will inevitably miss the TLB

0 Must access memory to find the appropriate PTE
» called walking the page fable

» incurs large performance penalty

Handling TLB Misses:
Hardware

@ Hardware-managed (e.g., x86)
0O The hardware does the page walk

0 Hardware fetches PTE and inserts it in
TLB

» If TLB is full, must replace another TLB
entry

0 Done transparently to system software

Handling TLB Misses:
Software

@ Software-managed (e.g., MIPS)

0 Hardware raises an exception, trap handler
runs in kernel

0 Handler does the page walk, fetches PTE,
and inserts/evicts entries in TLB

0 Handler must return to the same instruction
that caused the trap!

0 Careful not to generate a TLB miss while
running the handler!

Tradeoffs, Tradeoffs...

® Hardware-managed TLB
+ No exception on TLB miss. Instruction just stalls
+ No extra instruction/data brought into the cache

OS has no flexibility in deciding Page Table: hardware
must know location and format of PTEs

@ Software-managed TLB
+ OS can define Page Table organization
+ More flexible TLB entry replacement policies

Slower: exception causes to flush pipeline; execute
handler; pollute cache

TLB Coverage

® What fraction of memory can be accessed
without TLB misses?

o low TLB coverage can result in a large number of
memory references

Navarro et dal .,
OSDI 2002

10.0%

1000-fold 1.0%
decrease in 0.1%

I
15 years! —

0.001%
1985 1990 1995 2000

&Superpages

@ Wider TLB coverage by supporting page sizes
that are multiples of the base page size:
superpages
o Pentium: 4KB base; 4MB Super
o Itanium: 10 sizes, from 4KB (base) to 256 MB

@ A set of contiguous base pages can be
promoted to a superpage

@ Demotion works the other way around

Navarro et al.,

For more * Practical, ¢ransparent O/Oeraz(/ng
Systems support for superpages’

Tradeoffs, Tradeoffs...

+ Improved TLB coverage! but..
Larger internal fragmentation

External fragmentation (?)
0 superpage of N base pages

0 N free base frames free, but not contiguous
Less efficient reading

Coarser granularity for dirty, reference, and
protection bits

TLB Consistency - 1

@ On context switch

o VAs of old process should no longer be valid

o Change PTBR — but what about the TLB?

112

TLB Consistency - 1

@ On context switch

o VAs of old process should no longer be valid
o Change PTBR — but what about the TLB?
> Option 1: Flush the TLB

> Option 2: Add pid tag to each TLB entry

PID VirtualPage PageFrame Access
TLB Entry 1 | Ox0053 | 0x0012 | R/W

Ignore entries with wrong PIDs
113

TLB Consistency - II

® What if OS changes permissions on page?

o If permissions are reduced, OS must ensure
affected TLB entries are purged

> e.g., on copy-on-write
0 If permissions are expanded, no problem

> new permissions will cause an exception and
hardware and OS will restore consistency

114

Virtually
Addressed Caches

§ A copy of the contents
- of physical memory,
indexed by the virtual

add
Virtual Virtual Virtual
Address Vi Address Address
irtual Paqge
--------------- :-uuuu--> Miss ------uuuuu> TLB Miss uuuuuuuu> g
: Cache Table
4 Hit Hit
: Valid
v v v
; Data Frame Frame
Offset ;
Rt S plrYetag Lo
Physical
: Address
Data @ On context switch, must flush the VC (or use tagging)
A i @ Permission reduction: VC entries don't include

permission info: use in tandem with TLB (access cache
and TLB at the same time)

- o B Th e e - o

Invalid -*» Exception

Physical
Memory

Virtual
Address

Virtual
Cache

Hit

Data

Physically
Addressed Caches

Virtual
Address

Offset

1 1
VA 1 Page
TLB | Miss === 9€ Tinvalid-» Exception
Table
Hit
: Valid
v v
Frame Frame
Ly a
' Physical 25 Physical
------------ > Miss--------u-->
Physical { Cache Memory
Address
Hit
\ \
Data Data

