
Eliminating External
Fragmentation: Paging
Allocate VA & PA memory in chunks of the same,
fixed size (pages and frames, respectively)

Adjacent pages in VA (say, within the stack)
need not map to contiguous frames in PA!

Free frames can be tracked using a simple bitmap

0011111001111011110000 one bit/frame

No more external fragmentation!

But now internal fragmentation (you just can’t win…)

when memory needs are not a multiple of a page

typical size of page/frame: 4KB to 16KB

 51

How can I reference

a byte in VA space?

Virtual address

Interpret VA as comprised of two components

page: which page?

offset: which byte within that page?

}32 bits

 53

Virtual address

}o (12 bits)}p (20 bits)

 54

Interpret VA as comprised of two components

page: which page?

no. of bits specifies no. of pages are in the VA space

offset: which byte within that page?

Virtual address

}}
 55

Interpret VA as comprised of two components

page: which page?

no. of bits specifies no. of pages are in the VA space

offset: which byte within that page?

no. of bits specifies size of page/frame

p (20 bits) o (12 bits)

Virtual address

}}
 56

To access a byte

extract page number

map that page number into a frame
number using a page table

Note: not all pages may be mapped
to frames

extract offset

access byte at offset in frame

8

4
0
6
1
2

Page Table

0
1
2
3
4

220 -1

.

.

.

.

.

.

.

.

.

.

.

p (20 bits) o (12 bits)

Page number
Frame
number

Basic Paging
CPU o

p

p

f

f

o

 57

Physical

Memory

Page Table
f

PTBR

The Page Table

lives in memory

at the physical address
stored in the Page Table
Base Register

PTBR value saved/restored
in PCB on context switch

Frame

The Page
Table too
needs to
live in

memory!

Basic Paging
CPU o

p

p

f

f

o

 58

Physical

Memory

Page Table
f

The Page Table

lives in memory

at the physical address
stored in the Page Table
Base Register

PTBR value saved/restored
in PCB on context switch

Frame Access

PTBR

The Page
Table too
needs to
live in

memory!

Helps implement
mapping

Page Table Entries

Frame number

Present (Valid/Invalid) bit

Set if entry stores a valid mapping.
If not, and accessed, page fault

Referenced bit

Set if page has been referenced

Modified (dirty) bit

Set if page has been modified

Protection bits (R/W/X)

4 0
7 0
2 0
0 0
7 1
6 0
5 1
4 0
2 0
0 0
3 1
4 1
0 1
6 1
1 1
2 1

Page table

11
2
9
4
5
0
1
30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Physical

memory}

Protection

bits (R/W/X)

Referenced

Modified

Present

 59
0

1

2

3

4

5

6

7

Present Referenced

Modified

Protection

AccessFrame

Other

Other

Sharing
Processes share a page by each
mapping a page of their own
virtual address space to the
same frame

Fine tuning using protection
bits (RWX)

We can refine COW to operate at
the granularity of pages

on fork(), mark all pages in
page table Read only

Page Table

Process 1Page Table

Process 0

Physical

Memory

 60

on write:

page fault

allocate new frame

copy page

mark both pages R/W

Example

A
B
C
D
E
F
G
H
I
J
K
L

2

1

0

VA

Space

4

3

2

1

0

PA

Space

0

1

2

Page

Table

A
B
C
D

E
F
G
H

I
J
K
L

0

3

1

Page size: 4 bytes

 61

Space overhead

Two sources, in tension:

data structure overhead (the Page Table itself)

fragmentation

How large should a page be?

Overhead for paging:

(#entries x sizeofEntry) + (#“segments” x pageSize/2)

((VA_Size/pagesize) x sizeofEntry) + (#“segments” x pageSize/2)

=
=

What determines sizeofEntry?

enough bits to identify physical page (log2 (PA_Size / page size))

should include control bits (present, dirty, referenced, etc)

usually word or byte aligned

 62

sets of contiguous pages

Computing paging
overhead

1 MB maximum VA, 1 KB page, 3 segments (program,
stack, heap)

((220 / 210) x sizeofEntry) + (3 x 29)

If I know PA is 64 KB then sizeofEntry =
sizeofFrameNo + #ofAccessBits =
6 (since we have 26 frames) + #ofAccessBits

if 7 access bits, byte aligned size of entry: 16 bits

 63

What’s not to love?
Space overhead

With a 64-bit address space, size of page table can
be huge!

Time overhead

Accessing data now requires two memory accesses

must also access page table, to find mapped frame

 64

…and, like most times, space and time are in tension…

Reducing the Storage
Overhead of Page Tables

Size of the page table
for a machine with 64-
bit addresses and a
page size of 4KB?

an array of 252
entries!

Good news

most space is unused

Use a better data
structure to express
the Page Table

a tree!

 Example

32 bit address space

4Kb pages

4 bytes PTE

VP 0
. . .

VP 1023
VP 1024

. . .
VP 2047

Gap

1023

unallocated

pages
VP 9215

unallocated

pages

} 2K pages

code/data

}6K pages

unallocated

1023 pages

unallocated}
1 page

for stack

 65

Page Table

Reducing the Storage
Overhead of Page Tables

Size of the page table
for a machine with 64-
bit addresses and a
page size of 4KB?

an array of 252
entries!

Good news

most space is unused

Use a better data
structure to express
the Page Table

a tree!

VP 0
. . .

VP 1023
VP 1024

. . .
VP 2047

Gap

1023

unallocated

pages
VP 9215

unallocated

pages

} 2K pages

code/data

}6K pages

unallocated

1023 pages

unallocated}
1 page

for stack

 66

Page Table

PTE 0
. . .

PTE 1023

PTE 0
PTE 1
PTE 2

PTE 1023

PTE 0
. . .

PTE 1023

PTE 0
. . .

PTE 1023

PTE 0
. . .

PTE 1023
 Example

32 bit address space

4Kb pages

4 bytes PTE

Reducing the Storage
Overhead of Page Tables

Size of the page table
for a machine with 64-
bit addresses and a
page size of 4KB?

an array of 252
entries!

Good news

most space is unused

Use a better data
structure to express
the Page Table

a tree!

PTE 0
. . .

PTE 1023

PTE 0
. . .

PTE 1023

PTE 1023

1023 null

PTEs

VP 0
. . .

VP 1023
VP 1024

. . .
VP 2047

Gap

1023

unallocated

pages
VP 9215

unallocated

pages

} 2K pages

code/data

}6K pages

unallocated

1023 pages

unallocated}
1 page

for stack

 67

PTE 0
PTE 1

PTE 2 (null)
PTE 3 (null)
PTE 4 (null)
PTE 5 (null)
PTE 6 (null)
PTE 7 (null)

PTE 8

(9-1024)

null PTEs

Page Table

 Example

32 bit address space

4Kb pages

4 bytes PTE

