ANNOUNC

e

=N

@ Recitation for this week will cover required material

(Barrier Synchronization) assigned in the reading (C. 2|

of the Harmony book.

@ Reditation recording will be available!

Memory Management
(3EP, Ch. 12-24)

Previously, on CS4410...

Avoiding Deadlock:
The Bankers Algorithm

E.W. Dijkstra & N. Habermann

& Sum of max resources needs can
exceed total available resources

@ Acquiring all resources at once
can be inefficient!

@ Allow to parcel out resources
incrementally as long as

o there exists a schedule of loan
fulfillments such that

> all clients receive their maximal
loan

» build their house

» pay back all the loan

Living dangerously:
Safe, Unsafe, Deadlocked

Unsafe

A systems trajectory
through its state space

@ Safe: For any possible set of resource

requests, there exists one safe schedule
of processing requests that succeeds in
granting all pending and future requests

o no deadlock as long as system can
enforce that safe schedule!

Unsafe: There exists a set of (pending
and future) resource requests that leads
to a deadlock, independent of the
schedule in which requests are processed

o unlucky set of requests can force
deadlock

Deadlocked: The system has at least one
deadlock

Detecting Deadlock

@ 5 processes, 3 resources.

Holds Available Pending
Ri Rz Rs Ri Rz Rs Ri Rz Rs

P1 4y asliy 20 0 0 O P SRS S S8
P ady 4l 40 P s e o2
P b vl s P il i i
P sl el sl P sl a8l o2
P ally s wid P el il i

® Cannot determine whether the state is safe
o I need Max and Needs for that!

Yes, there
is a safe

@& But can determine if the state has a deadlock schedule!

o Given the set of pending requests, is there a safe sequence? If no,

deadlock T
> but it is not a safe state!

Detecting Deadlock

@ 5 processes, 3 resources.

Holds
Rii B> R

1

L0 N o) o 1 O
O M wWw pp O
O —» O O

® Cannot determine whether the state is safe
o I need Max and Needs for that!

0

0
3
|
2

Available

Ri Rz Rs

0]

0]

0]

Vi, 2 [0, FO

Pending

Ri

O — O n O

Rz Rs

® But can determine if the state has a deadlock

o Given the set of pending requests, is there a safe sequence? If no,

deadlock

Detecting Deadlock

@ 5 processes, 3 resources.

R:

P O

V0 0TS

2
3
2
0]

Holds
R2 Rs3

1

(@) S A D) G D)

0

0
3
|
2

Available Pending
Ri Rz Rs Ri Rz Rs
0.4 0 10 S o
P el
P 0 0
P il o8
S Y

® Cannot determine whether the state is safe
o I need Max and Needs for that!

@ Without Max, can we avoid deadlock by delaying granting

requests?

o NO! Deadlock triggered when request formulated, not granted!

9

Abstraction
IS our Business

® What I have
o A single (or a finite number) of CPUs

o Many programs I would like to run

® What I want: a Thread

o Each program has full control of one or more
virtual CPUs

10

Abstraction
IS our Business

@ What I have
o A certain amount of physical memory

o Multiple programs I would like fo run

» together, they may need more than the available physical memory

@ What I want: an Address Space

o Each program has as much memory as the machines
architecture will allow to name

o All for itself

11

Address Space

@ Set of all names used to identify and
manipulate unique instances of a given resource

0 memory locations (determined by the size of the
machines word)

> for 32-bit-register machine, the address space
goes from 0x00000000 to OxFFFFFFFF

o memory locations (determined by the number of
memory banks mounted on the machine)

o phone numbers (XXX) (YYY-YYYY)

o colors: R (8 bits) + G (8 bits) + B (8 bits)

12
LLHEEEEEHIIESSESEHEESS

Virtual Address Space:
An Abstraction for Memory

OXFFFFFFFF

® Virtual addresses start at O

® Heap and stack can be placed far
away from each other, so they can
nicely grow

® Addresses are all contiguous

Not at scale!

@ Size is independent of physical 1
memory on the machine

O0x00000000 ka

13
LLHEEEEEHIIESSESEHEESS

Physical Address Space:

How memory actually looks

@ Processes loaded in memory at some 0
memory location

contiguously

o virtual address O is not loaded at mapped, for
physical address O simplicity

W
Process 2 dat,
oy
@ ...physical memory may be too small Process 1 |
to hold even a single virtual address P

S : Process 3 sz
space in its enfirety :

@ Multiple processes may be loaded in
memory at the same time, and vyet...

(o

L
;/.»«;’F, 2720777
o 64-bit, anyone? ooy Wadtiziziza

14

II. Memory Isolation

Step 2: Address Translation
@ Implement a function mapping
(pid, virtual address) into physical address

Virtual Physical

Enables:

Isolation
Relocation
Data sharing et
Multiplexing

Non-contiguity

Q 0 0 Q0 0

II. Memory Isolation

Step 2: Address Translation
o Implement a function mapping
(pid, virtual address) into physical address

Virtual Physical

Enables:

o Isolation
© Relocation

© Data sharing
© Multiplexing

© Non-contiguity

Data Sharing

© Map different virtual addresses of distinct
processes to the same physical address —
("Share the kitchen”)

‘e §

Multiplexing

© The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

9 ¢

More Multiplexing

o At different times, different processes can map
part of their virtual address space into the
same physical memory — (change tenants)

o Y

Isolation

o At all times, functions used by different processes
map to disjoint ranges — aka “Stay in your room!”

Data Sharing

© Map different virtual addresses of distinct
processes to the same physical address —
("Share the kitchen")

3

Multiplexing

© The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

]

(Non) Contiguity

@ Contiguous virtual addresses can be mapped
to non-contiguous physical addresses...

Relocation

@ The range of the function used by a process
can change over time

9

Multiplexing

o Create illusion of almost infinite memory by
changing domain (set of virtual addresses) that
maps to a given range of physical addresses —
ever lived in a studio?

0:0

Multiplexing

© The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

o:p

(Non) Contiguity

@ ..and non-contiguous virtual addresses can
be mapped to contiguous physical addresses

A

Relocation

© The range of the function used by a process
can change over time —"Move to a new room!”

Multiplexing

© The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

More Multiplexing

o At different times, different processes can map
part of their virtual address space into the
same physical memory — (change tenants)

The Power
of
Mapping

Address Translation,
Conceptually

A Valid | :
e Who does khis?)
Dat '
4 > Physical
Physical Memory
Addre :
v
Data

8 T Tt e T T m{ T T T T T Y e Y T ta

Memory Management Unit
(MMU)

® Hardware device

Motorola

: 68000
0 Maps virtual addresses

to physical addresses

@ User process
0 deals with virtual addresses

DO never sees the physical address

@ Physical memory
0 deals with physical addresses

0O never sees the virtual address

The Identity Mapping

® Map each virtual address onto the OXFFFFFFFF
identical physical address

o Virtual and physical address spaces
have the same size

o Run a single program at a time

» OS can be a simple library

> very early computers

@ Friendly amendment: leave some of
the physical address space for the OS ox7rrrrreF

Text, Data, etc

o Use loader fo relocate process OS

» early PCs
19

More sophisticated
address translation

@ How tfo perform the mapping efficiently?

o So that it can be represented concisely?
o So that it can be computed quickly?

o So that it makes efficient use of the limited
physical memory?

o So that multiple processes coexist in physical
memory while guaranteeing isolation?

o So that it decouples the size of the virtual and
physical addresses?

@ Ask hardware for help!

20
LLHEEEEEHIIESSESEHEESS

Exception
Virtual

Base & Bound O

Bound Base

Physical
~\ Address

@ Goal: let multiple processes coexist
in memory while guaranteeing isolation

@ Needed hardware
o two registers: Base and Bound (a.k.a. Limit)

0 Stored in the PCB

@ Mapping
DO pa = va + Base

» as long as O < va < Bound

o On context switch, change B&B (privileged instruction)

21

Base & Bound

MAXsys
@ P;: Base = 1000; Bound = 300
@ P,: Base = 500; Bound = 400
Memory
Exception
1300 —=
CPU 1000 —F
| Virtual Physical
address address
Bound Base
Register 22Register 0

Base & Bound

AXsys
o P.: Base = 1000; Bound = 300 ;
@ P,: Base = 500; Bound = 400
Memory
Exception
1300 —=
CPU 1000 —F
| Virtual Physical
P address address
1
300 1000
Bound Base
Register 23Register 0

Base & Bound

AXsys
o P.: Base = 1000; Bound = 300 ;
@ P,: Base = 500; Bound = 400
Memory
Exception
1300 —=
CPU 1000 —F
| Virtual Physical
P address address
1
300 1000
Bound Base
Register 2«Register 0

Base & Bound

MAXsys
@ P;: Base = 1000; Bound = 300
@ P.: Base = 500; Bound = 400
Memory
Exception
1300 —=
S—
CPU 1150 1000 —F
; Virtual Physical '
address address
P
| Context Switch 300 1000
Base & Bound Bound Base
soved L RLECE Register 2sRegister 0

Base & Bound

MAXsys
@ P;: Base = 1000; Bound = 300
@ P>: Base = 500; Bound = 400
Memory
Exception
1300 —=
CPU 1000 —F
; Virtual Physical
address address
P>
| Context Switch 400 500
Bound Base
Register 26Register 0

On Base & Bound

@ Contiguous Allocation

o contiguous virtual addresses are mapped to
contiguous physical addresses

@ But mapping entire address space to physical
memory

o is wasteful
> lots of free space between heap and stack...

» makes sharing hard

o does not work if the address space is larger
than physical memory

» think 64-bit registers...

27
LLHEEEEEHIIIEHHSESSEESSS

E Pluribus Unum

® An address space comprises
multiple segments

o contiguous sets of virtual
addresses, logically connected

» heap, code, stack, (and also
globals, libraries...)

0 each segment can be of a
different size 1

28

Segmentation:
Generalizing Base & Bound

® Base & Bound registers to
each segment

o each segment independently
mapped to a set of
contiguous addresses in
physical memory

gL need to map unused Sk ¢
virtual addresses 28KBY ,

| Code 10K 2K IZKB Program Code |
i | 10K B! :

OK Bzt idedis

Segment Base Bound

| Stack 28 2K

Heap | 35K | 3K

, (not to scale)
T pemar e

Segmentation

@ Goal: Supporting large address spaces (while
allowing multiple processes to coexist in memory)

® Needed hardware

o two registers (Base and Bound) per segment

» values stored in the PCB

o if many segments, a segment table, stored in memory,
at an address pointed fo by a Segment Table Register
(STBR)

> process STBR value stored in the PCB

30

Segmentation: Mapping

@ How do we map a virtual address to the
appropriate segment?
0 Read VA as having two components

» s most significant bits identify the segment
— at most 2°segments

» 0 remaining bits identify offset within segment
— each segments size can be at most 2° bytes

k = s+o0 bits

s bits 31 o bits

Segment Table

@ Use s bits to index to the appropriate row of the
segment table

Base Bound (Max 4k) Access
Code 32K 2K Read/Execute
Heap 34K 3K Read/Write
Stack , 28K 3K Read/Write

@ Segments can be shared by different processes

o use protection bits to determine if shared Read only
(maintaining isolation) or Read/Write (if shared, no isolation)

» processes can share code segment while keeping data private

32

Implementing Segmentation

MAXsys
Segment table
@ generalizes Base & Bound
Memory
3 lo exception
A 40K
M Logical o | -~
addresses
.. : O
Segment Table yes ’”“ thSiCOl
STBR Base Register : addresses
_________ Base Bound Access BOUN : Base :
512 40K
S A A
ST e » o Fe T
33 .

‘
Process 13
Program A
@ pid = fork();
if (pid==0)
exec(B);
else
? wait(&status); 'r. ‘
|
ef :
Bewinr e .’
° ° °
Revisiting |
o

fork() ;

DIt

Process 13
Program A

[..,

_pid = fork();

if (pid==0)
exec(B);

else

wait(&status);

Process 13
Program A

pid = fork();
if (pid==0)

exec(B);
else

-wait{&status);

Process 14
Program B

- main() {

exit(3);
}

Revisiting fork()

@ Copying an entire address space can be
costly...

o especially if you proceed to obliterate it right
away with exec()!

35

Revisiting fork():
Segments to the Rescue

@ Instead of copying entire address space, copy
just segment table (the VA->PA mapping)

Base Bound Access Base Bound Access
Code 32K 2K RX Code 32K 2K 29,4
Heap 34K 3K RW Heap 34K 3K RW
Stack 28K 3K RW Stack 28K 3K RW
Parent Child

@ but change all writeable segments to Read only

36

Revisiting fork():
Segments to the Rescue

@ Instead of copying entire address space, copy
just segment table (the VA->PA mapping)

Base Bound Access Base Bound Access
Code 32K 2K RX Code 32K 2K 29,4
Heap JAKZATT 3K ¢ LR Heap | 34K 3K R
Stack 28K 3K R Stack 28K 3K R
Parent Child

@ but change all writeable segments to Read only

® Segments in VA spaces of parent and child
point to same locations in physical memory @

37

Copy on Write (COW)

@ When trying to modify an address in a COW
segment:

o exception!

» exception handler copies just the affected
segment, and changes both the old and new
segment back to writeable

@ If exec() is immediately called, only stack
segment is copied!

o it stores the return value of the fork() call,
which is different for parent and child

38
LLHEEEEEHIIESSESEHEESS

Managing Free space

@ Many segments, different processes, 0%
different sizes

@ OS tracks free memory blocks (“holes”)

o Initially, one big hole

@ Many strategies to fit segment into free
memory (think “assigning classrooms
to courses”) e

o First Fit: first big-enough hole

o Next Fit: Like First Fif, but starting from
where you left off

0 Best Fit: smallest big-enough hole

0 Worst Fit: largest big-enough hole

External Fragmentation

0S:

@ Over time, memory can become full

of small holes

0 Hard to fit more segments

0 Hard fo expand existing ones

@ Compaction

0 Relocate segments to coalesce holes

40

External Fragmentation

0S:

@ Over time, memory can become full
of small holes

0 Hard to fit more segments

0 Hard fo expand existing ones

@ Compaction - R

0 Relocate segments to coalesce holes

41

External Fragmentation

- 0S

@ Over time, memory can become full
of small holes

0 Hard to fit more segments

0 Hard fo expand existing ones

@ Compaction

0 Relocate segments to coalesce holes

» Copying eats up a lot of CPU time!
— if 4 bytes in 10ns, 8 GB in 20s!

@ But what if a segment wants to grow?

42

Eliminating External
Fragmentation: Swapping

o Preempt processes and ® Move images of
reclaim their memory suspended processes
to backing store

OS

Ready

queue
Suspended Do 5
| swapin
) swap out

Suspended
queue

Semaphores/condition queues
43

Eliminating External Tiling
Fragmentation: Memory

Virtual (Py) Physical

Virtual (Pi)

..
...
...
--

...

Tiling
Memory

Physical

.................................

' ' ' '

' ' ' '

' ' ' '

' ' ' '

' ' ' '
..................................

' ' ' '

: : : el 51

' ' ' '
..................................

..................................

.................................

Virtual (Pi)

..

...
""
...

...

Tiling
Memory

Physical

.................................

' ' ' '

' ' ' '

' ' ' '

' ' ' '

' ' ' '
..................................

' ' ' '

: : : el 51

' ' ' '
..................................

..................................

.................................

..................................

PSS Virtual (P;)

>0 i1 i2i3i4i5:i6]:

...

Tiling

Memory

Physical

..................................
'''''''''''''''''''''''''''''''''
..................................

.................................

..................................

frame

i

Tiling
Memory

Page Virtual (Py) Physical
P01 i2i3 45 6 SENEE lLib | Frame

s il s

(4243144145 46147 | L 6 142

[1 1
...... T e T L L Lr LT, N e L EE EET PR
1 1 1 1] 1 ' ' 1 1

..................................

..................................

P,

P,

...

...

...

...

Tiling

Memory

{42143} 441 45} 46 47 |

...... T e e e i e RS SIS, A

...

Physical

..................................

..................................

P,

P,

...

...

...

...

{42143} 441 45} 46 47 |

...... T e e e i e RS SIS, A

Tiling
Memory

Physical

Eliminating External
Fragmentation: Paging

@ Allocate VA & PA memory in chunks of the same,
fixed size (pages and frames, respectively)

@ Adjacent pages in VA (say, within the stack)
need not map to contiguous frames in PA!

D0 Free frames can be tracked using a simple bitmap
> 0011111001111011110000 one bit/frame

o No more external fragmentation!

o But now internal fragmentation (you just cant win...)
0 when memory needs are not a multiple of a page

o typical size of page/frame: 4KB to 16KB
51

How can I reference
a byte in VA space?

Virtual address

32 bits

e

iy 5 o S

@ Interpret VA as comprised of two components

o page: which page?

o offset: which byte within that page?

53

Virtual address

p (20 bits) o (12 bits)

— B Sl

@ Interpret VA as comprised of two components
o page: which page?
» no. of bits specifies no. of pages are in the VA space

o offset: which byte within that page?

A

Virtual address

p (20 bits) o (12 bits)

@ Interpret VA as comprised of two components
o page: which page?
» no. of bits specifies no. of pages are in the VA space

o offset: which byte within that page?

> no. of bits specifies size of page/frame

55

Virtual address

p (20 bits) o (12 bits)

— B Sl

@ To access a byte

a

a

extract page number

map that page number into a frame
number using a page table

220]

» Note: not all pages may be mapped

to frames
extract offset

access byte at offset in frame

56

Page number

\

Page Table
8
: Frame
; number
4 4
3 0 /
2 6
1 1
0 2

Basic Paging

Physical
Memory

y;

L Page Table

Frame

The Page Table
o lives in memory

o at the physical address
stored in the Page Table
Base Register

A

A

o PTBR value saved/restored

in PCB on context switch

57

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-~

PTBR

o

The Page
Table too
needs to
live in
memory!

Basic Paging

Physical
Memory

i

y;

TV

Page Table

Access

=
~
-~
-~
-~
~
~
-~
L]
-
-~
~
-~
-~
-
-~
L]
-~
L
L

The Page Table

o lives in memory

o at the physical address /£
stored in the Page Table

Base Register

o PTBR value saved/restored
in PCB on context switch

A Z

Helps implement
mapping

58

PTBR

o

The Page
Table too
needs to
live in
memory!

Page Table Entries

Modified
Brdcant Referenced Other Protection
2w
Frame number 7P AdE g
Present (Valid/Invalid) bit Frame Access :
Protection PhYSICClI
o Set if entry stores a valid mapping. Page table bits (RAW/X) memory
If not, and accessed, page fault 15[Jo[4=
141 7 0] Referenced l 1
5 13 2 0] <
Referenced bit =T i e >
o Set if page has been referenced 11(1) Z (1) H T Other 9
9 5 I‘N}
Modified (dir’ry) bit g 4 Jo ‘\\\pmsem 4
7 2 0
o Set if page has been modified 6| o fo S
5 3 1
: . 0
Protection bits (R/W/X) s
AT 1
1 1 1
59 0] 2 1 3

