
ANNOUNCEMENTS
Recitation for this week will cover required  material 
(Barrier Synchronization) assigned in the reading (C. 
21 of the Harmony book.

Recitation recording will be available!

Released homework for CS5410 students 

Spring ’24: CS5220:  Applied High-Performance and Parallel 
Computing

Spring ’24: CS5414: Principles of Distributed Computing

Overview of computer architecture and memory hierarchy, performance basics, parallel 
programming models, and survey of parallel machines. Parallel programming languages, 
vectorizing compilers, parallel libraries and toolboxes, overview of modern parallel algorithms. 



Previously, on CS4410…



Deadlock only if they all hold

Bounded resources

Acquire can block invoker


No preemption

the resource is mine, MINE! (until I release it)


Wait while holding

holds one resource while waiting for another


Circular waiting

Pi waits for Pi+1 and holds a resource requested by Pi-1 
sufficient if one instance of each resource

Necessary conditions  
for deadlock

1

2

3

4



DAG Reduction

Reduction Algorithm

Find a node with no outgoing edges


Erase any edges coming into it

Repeat until no such node


Intuition: Node with no outgoing edges is not 
waiting on any resource 


It will eventually finish and release its resources

Processes waiting for those resources will be able to 
acquire them and will no longer be waiting!

Erase all edges  <latexit sha1_base64="fLsl4TfIanPRfArZOS2g/Qi7uwU=">AAAB63icjVBNS8NAEJ3Ur1q/qh69LBbBU0lU1JMWvHisYG2hDWWz3bRLdzdhdyKU0L/gxYMiXv0l/gNv/huT1IOKgg8GHu/NMG8miKWw6LrvTmlufmFxqbxcWVldW9+obm7d2CgxjLdYJCPTCajlUmjeQoGSd2LDqQokbwfji9xv33JjRaSvcRJzX9GhFqFgFHOpJ8KwX615dbcA+ZvUzl8PCzT71bfeIGKJ4hqZpNZ2PTdGP6UGBZN8WukllseUjemQdzOqqeLWT4usU7KXKQMSRiYrjaRQv06kVFk7UUHWqSiO7E8vF3/zugmGp34qdJwg12y2KEwkwYjkh5OBMJyhnGSEMiOyrISNqKEMs/dU/veEm4O6d1w/unJrjTOYoQw7sAv74MEJNOASmtACBiO4gwd4dJRz7zw5z7PWkvM5sw3f4Lx8AP7RkGs=</latexit>() Graph has no cycles 
Edges remain <latexit sha1_base64="fLsl4TfIanPRfArZOS2g/Qi7uwU=">AAAB63icjVBNS8NAEJ3Ur1q/qh69LBbBU0lU1JMWvHisYG2hDWWz3bRLdzdhdyKU0L/gxYMiXv0l/gNv/huT1IOKgg8GHu/NMG8miKWw6LrvTmlufmFxqbxcWVldW9+obm7d2CgxjLdYJCPTCajlUmjeQoGSd2LDqQokbwfji9xv33JjRaSvcRJzX9GhFqFgFHOpJ8KwX615dbcA+ZvUzl8PCzT71bfeIGKJ4hqZpNZ2PTdGP6UGBZN8WukllseUjemQdzOqqeLWT4usU7KXKQMSRiYrjaRQv06kVFk7UUHWqSiO7E8vF3/zugmGp34qdJwg12y2KEwkwYjkh5OBMJyhnGSEMiOyrISNqKEMs/dU/veEm4O6d1w/unJrjTOYoQw7sAv74MEJNOASmtACBiO4gwd4dJRz7zw5z7PWkvM5sw3f4Lx8AP7RkGs=</latexit>() Deadlock



Deadlock Prevention: 
Negate 

Eliminate “Acquire can block invoker/bounded 
resources”


Make resources sharable without locks

Wait-free synchronization

The Harmony book (Chapter 24) has examples of 
non-blocking data structures


Have sufficient resources available, so acquire 
never delays (duh!)


E.g., use an unbounded queue, or make sure that 
queue is “large enough”

1



Deadlock Prevention: 
Negate 

Allow preemption

Requires mechanisms to save/restore resource 
state


multiplexing (registers, memory, etc).   VS.

undo/redo (database transaction processing)


Allow OS to preempt resources of waiting 
processes

Allow OS to preempt resources of requesting 
processes

2



Deadlock Prevention: 
Negate 

Eliminate Hold & Wait

Don’t hold resource while waiting for others


Rewrite code

3

Q: If bar() does not access shared variables 
and does not need a lock, are these the same?


def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		bar();	
		doOtherStuff();	
		release(?mutex);

def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		release(?mutex);	
		bar();	
		acquire(?mutex);	
		doOtherStuff();	
		release(?mutex);

code in some other module that 
may acquire more locks



Deadlock Prevention: 
Negate 

Eliminate Hold & Wait

Don’t hold resource while waiting for others


Rewrite code

3

A: No! In the code on the right, the state 
that the mutex protects can change 
between doSomeStuff and doOtherStuff

def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		bar();	
		doOtherStuff();	
		release(?mutex);

def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		release(?mutex);	
		bar();	
		acquire(?mutex);	
		doOtherStuff();	
		release(?mutex);

code in some other module that 
may acquire more locks



Deadlock Prevention: 
Negate 

Eliminate Hold & Wait

Don’t hold resource while waiting for others


Rewrite code

Request all resources before execution begins… 
but

Processes don’t know what they need 

Starvation (if waiting on popular resources)

Low utilization (if resources needed only briefly)


Release all resources before asking new ones

Still has the last two problems…

3



Deadlock Prevention: 
Negate 

Eliminate circular waiting

Single lock for the entire system?

Impose a total order on the sequence in which 
different types of resources can be acquired


Each resource type is assigned to a level 

Makes cycles impossible, since cycles would have to go 
from low to high level resources, and then back to low

Can be relaxed to a strict partial order* if all 
resources “of the same level”  are acquired together 

4

*a binary relation < that is: 
1.  irreflexive: not  a < a
2.  asymmetric: if , then not  a < b b < a

3.  transitive: if  and , then  a < b b < c a < c



Havender’s Scheme (OS/360)
Hierarchical Resource Allocation


Every resource is associated with a level.


Rule H1:  All resources from a given level 
must be acquired using a single request.


Rule H2:  After acquiring (and holding) from 
level , must not acquire from  where .


Rule H3:  May not release from  unless 
already released from  where .

Lj Li i < j

Li
Lj j > i

ac
qu

ire
re

le
as

eExample of allowed sequence:

1.   acquire(W@ , X@ )L1 L1
2.   acquire(Y@ )L3
3.   release(Y@ )L3
4.   acquire(Z@ )L2

L2

L1

Ln



Dining Philosophers (Again)

0

4

32

1

1

2

3

4

0

Pi: do forever

acquire( F(i) );

acquire( G(i) );

eat;

release( F(i) );

release( G(i) );


 end

G(i): max(i, (i+1) mod 5)

F(i): min(i, (i+1) mod 5)

Contention!



Ordering Resources 

in Harmony 

or



Simultaneous Acquisition 

in Harmony 

   Wait for both                      
 forks and  then   
 grab them both! 

<latexit sha1_base64="dxnn2o1m22ZgdN5Qnc1Ep1YucSs=">AAAB6XicdVDLSgMxFM3UV62vqks3oUUQhCHTVtvuim5cVrEP6Awlk2ba0MyDJCMMQ//AjaAibv0jd/0bM62Cih64cDjnXu69x404kwqhuZFbWV1b38hvFra2d3b3ivsHXRnGgtAOCXko+i6WlLOAdhRTnPYjQbHvctpzp5eZ37ujQrIwuFVJRB0fjwPmMYKVlm7s2bBYRmYToWYTQWSiarVuVTLSqFXPatAy0QLlVsk+fZy3kvaw+G6PQhL7NFCEYykHFoqUk2KhGOF0VrBjSSNMpnhMB5oG2KfSSReXzuCxVkbQC4WuQMGF+n0ixb6Uie/qTh+rifztZeJf3iBWXsNJWRDFigZkuciLOVQhzN6GIyYoUTzRBBPB9K2QTLDAROlwCjqEr0/h/6RbMa1zs3at07gAS+TBESiBE2CBOmiBK9AGHUCAB+7BE3g2psaD8WK8LltzxufMIfgB4+0DHUCQvg==</latexit>

}
 Release         

both forks 

<latexit sha1_base64="dxnn2o1m22ZgdN5Qnc1Ep1YucSs=">AAAB6XicdVDLSgMxFM3UV62vqks3oUUQhCHTVtvuim5cVrEP6Awlk2ba0MyDJCMMQ//AjaAibv0jd/0bM62Cih64cDjnXu69x404kwqhuZFbWV1b38hvFra2d3b3ivsHXRnGgtAOCXko+i6WlLOAdhRTnPYjQbHvctpzp5eZ37ujQrIwuFVJRB0fjwPmMYKVlm7s2bBYRmYToWYTQWSiarVuVTLSqFXPatAy0QLlVsk+fZy3kvaw+G6PQhL7NFCEYykHFoqUk2KhGOF0VrBjSSNMpnhMB5oG2KfSSReXzuCxVkbQC4WuQMGF+n0ixb6Uie/qTh+rifztZeJf3iBWXsNJWRDFigZkuciLOVQhzN6GIyYoUTzRBBPB9K2QTLDAROlwCjqEr0/h/6RbMa1zs3at07gAS+TBESiBE2CBOmiBK9AGHUCAB+7BE3g2psaD8WK8LltzxufMIfgB4+0DHUCQvg==</latexit>

}

one boolean and one CV per fork

initially, no forks are held

if left fork is used, 
wait until free

if right fork is used, 
wait until free

one mutex



Simultaneous Acquisition 

in Harmony 

Wait for 
both      

    forks to 
be available



Simultaneous Acquisition 

in Harmony 

Wait for  
left fork  

    then  
wait for  
right fork

Wouldn’t 
this be just 

as good?



Simultaneous Acquisition 

in Harmony 

Wait for  
left fork  

    then  
wait for  
right fork

NO!

Run it 
through 
Harmony!



Avoiding Deadlock:  
The Banker’s Algorithm

Sum of max resources needs can 
exceed total available resources

Acquiring all resources at once 
can be inefficient!

Allow to parcel out resources 
incrementally as long as


there exists a schedule of loan 
fulfillments such that


all clients receive their maximal 
loan 

build their house

pay back all the loan 

E.W. Dijkstra & N. Habermann



Living dangerously: 
Safe, Unsafe, Deadlocked

Safe: For any possible set of resource 
requests, there exists one safe schedule 
of processing requests that succeeds in 
granting all pending and future requests


no deadlock as long as system can 
enforce that safe schedule!


Unsafe: There exists a set of (pending 
and future) resource requests that leads 
to a deadlock, independent of the  
schedule in which requests are processed


unlucky set of requests can force 
deadlock


Deadlocked: The system has at least one 
deadlock  

Safe

Deadlock

Unsafe

A system’s trajectory 

through its state space



Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

Processes declare worst-case needs (big assumption!), but then ask 
for what they “really” need, a little at a time


Sum of maximum resource needs can exceed total available resources


Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether resulting state is safe (i.e., whether RAG is reducible)


A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the 
resources that  Pi can still request can be satisfied by the currently available resources plus 
the resources currently held by all Pj, for Pj preceding Pi in the permutation  

E.W. Dijkstra & N. Habermann

37

Available = 3

Process Max 
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Safe?

Available resources can satisfy P1’s needs

Once P1 finishes, 5 available resources

Now, available resources can satisfy P0’s needs

Once P0 finishes, 10 available resources

Now,  available resources can satisfy P3’s needs

Yes!  Schedule: [P1, P0, P3]



Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

Processes declare worst-case needs (big assumption!), but then ask 
for what they “really” need, a little at a time


Sum of maximum resource needs can exceed total available resources


Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)


A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the 
resources that  Pi can still request can be satisfied by the currently available resources plus 
the resources currently held by all Pj, for Pj preceding Pi in the permutation  

E.W. Dijkstra & N. Habermann

38

Available = 3

Process Max 
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Suppose P2 asks for 2 resources 
If granted, is the resulting state

Safe?



Processes declare worst-case needs (big assumption!), but then ask 
for what they “really” need, a little at a time


Sum of maximum resource needs can exceed total available resources


Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)


A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the 
resources that  Pi can still request can be satisfied by the currently available resources plus 
the resources currently held by all Pj, for Pj preceding Pi in the permutation  

Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

39

Available = 3

Process Max 
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Safe?

Available = 1

Process Max 
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 4 5

If so, request is granted; otherwise, requester must wait

E.W. Dijkstra & N. Habermann



The Banker’s books
Assume  processes,  resources

Maxij = max amount of units of resource Rj needed by Pi


MaxClaimi: Vector of size  — MaxClaimi[j] = Maxij


Holdsij = current allocation of Rj held by Pi

HasNowi =  Vector of size  — HasNowi[j] = Holdsij


Available = Vector of size  — Available[j] = units of Rj available


A request by Pk is safe if, assuming the request is granted, 
there is a permutation of P1, P2,…, Pn  such that, for all Pi in the 
permutation

n m

m

m

m

Needsi =     

40

MaxClaimi - HasNowi

i�1X

j=1

         +      HasNowj≤ Avail



An Example
5 processes, 4 resources


Is this a safe state? 

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Holds

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Available
R1 R2 R3 R4

41



An Example
5 processes, 4 resources


Is this a safe state? 

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Available
R1 R2 R3 R4

-
0 0 0 0
0 7 5 0
1 0 0 3
0 0 2 0
0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

Needs

While safe permutation does not include all processes:

Is there a Pi such that Needsi ≤ Avail?


if no, exit with unsafe

if yes, add Pi to the sequence and set Avail = Avail + HasNowi


Exit with safe

P1, P4, P2, P3, P5

42

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Holds



5 processes, 4 resources


P2 wants to change its holdings to

0 0 0 0
0 7 5 0
1 0 0 3
0 0 2 0
0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

Needs

An Example

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Holds

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

1 5 2 0

Available
R1 R2 R3 R4

0 4 2 0

43



An Example
5 processes, 4 resources


P2 wants to change its holdings to

0 0 1 2
0 4 2 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Holds

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

2 1 0 0

Available
R1 R2 R3 R4

0 0 0 0
1 3 3 0
1 0 0 3
0 0 2 0
0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

Needs

44

0 4 2 0

Safe? Reduce P1



An Example
5 processes, 4 resources


P2 wants to change its holdings to

0 0 0 0
0 4 2 0
1 3 5 3
0 6 3 2
0 0 1 4

P1

P2

P3

P4

P5

R1 R2 R3 R4

Holds

0 0 0 0
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

P1

P2

P3

P4

P5

R1 R2 R3 R4

Max

2 1 1 2

Available
R1 R2 R3 R4

0 0 0 0
1 3 3 0
1 0 0 3
0 0 2 0
0 6 4 2

P1

P2

P3

P4

P5

R1 R2 R3 R4

Needs

0 4 2 0

Safe? Reduce P1

Unsafe!
; can’t reduce any further

If all processes were to ask together all 
the resources they may need, deadlock!



Reactive Responses 

to Deadlock

Deadlock Detection

Track resource allocation (who has what)

Track pending requests (who’s waiting for what)


When should it run?

For each request?

After each unsatisfiable request?

Every hour?

Once CPU utilization drops below a threshold?



Detecting Deadlock
5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock

0 1 0
2 0 0
3 0 3
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

0 0 0

Available
R1 R2 R3

0 0 0
2 0 2
0 0 0
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

47



Detecting Deadlock

0 1 0
2 0 0
3 0 3
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

0 0 0

Available
R1 R2 R3

0 0 0
2 0 2
0 0 0
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

48

5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock



Detecting Deadlock

0 1 0
2 0 0
0 0 0
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

3 0 3

Available
R1 R2 R3

0 0 0
2 0 2
0 0 0
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

49

5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock



Detecting Deadlock

0 1 0
2 0 0
0 0 0
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

3 0 3

Available
R1 R2 R3

0 0 0
2 0 2
0 0 0
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

50

5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock



Detecting Deadlock

0 0 0
2 0 0
0 0 0
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

3 1 3

Available
R1 R2 R3

0 0 0
2 0 2
0 0 0
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

51

5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock



Detecting Deadlock

0 0 0
2 0 0
0 0 0
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

3 1 3

Available
R1 R2 R3

0 0 0
2 0 2
0 0 0
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

52

5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock



Detecting Deadlock

0 0 0
2 0 0
0 0 0
0 0 0
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

5 2 4

Available
R1 R2 R3

0 0 0
2 0 2
0 0 0
0 0 0
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

53

5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock



Detecting Deadlock

0 0 0
2 0 0
0 0 0
0 0 0
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

5 2 4

Available
R1 R2 R3

0 0 0
2 0 2
0 0 0
0 0 0
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

54

5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock



Detecting Deadlock

0 0 0
0 0 0
0 0 0
0 0 0
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

7 2 4

Available
R1 R2 R3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

55

5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock



Detecting Deadlock

0 0 0
0 0 0
0 0 0
0 0 0
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

7 2 4

Available
R1 R2 R3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

56

5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock



5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock

Detecting Deadlock

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

P1

P2

P3

P4

P5

R1 R2 R3

Holds

7 2 6

Available
R1 R2 R3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

P1

P2

P3

P4

P5

R1 R2 R3

Pending

57

Yes, there 

is a safe 
schedule!



5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock

Detecting Deadlock

0 1 0
2 0 0
3 0 3
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

0 0 0

Available
R1 R2 R3

0 0 0
2 0 2
0 0 0
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

58 but it is not a safe state!

Yes, there 

is a safe 
schedule!



Detecting Deadlock

0 1 0
2 0 0
3 0 3
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

0 0 0

Available
R1 R2 R3

0 0 0
2 0 2
0 0 1
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

59

5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


But can determine if the state has a deadlock

Given the set of pending requests, is there a safe sequence? 
If no, deadlock



5 processes, 3 resources.


Cannot determine whether the state is safe

I need Max and Needs for that!


Without Max, can we avoid deadlock by delaying granting 
requests?

Detecting Deadlock

0 1 0
2 0 0
3 0 3
2 1 1
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Holds

0 0 0

Available
R1 R2 R3

0 0 0
2 0 2
0 0 1
1 0 2
0 0 2

P1

P2

P3

P4

P5

R1 R2 R3

Pending

60
NO! Deadlock triggered when request formulated, not granted!



Deadlock Recovery
Blue screen & reboot

Kill one/all deadlocked processes


Pick a victim (how?); Terminate; Repeat as needed

Can leave system in inconsistent state


Proceed without the resource (if application permits)

Example: timeout on inventory check at Amazon


Use transactions

Rollback & Restart

Need to pick a victim…



Summary
Prevent


Negate one of the four necessary conditions


Avoid

Schedule processes carefully


Detect

Has a deadlock occurred?


Recover

Kill or Rollback


