Previously, on CS4410...

Back to
Split Binary Semaphores

Nurses office: critical section protecting At any time, exactly one

variables that determine when to wait semaphore or thread is green
(and thus, at most one

semaphore is green (Invariant))

Rooms: waiting conditions

Back to
Split Binary Semaphores

R/W Lock R/W Lock
Nurses office: critical section protecting At any time, exac’rl.y one
variables that determine when to wait semaphore or thread is green

(and thus, at most one

Rooms: waiting conditions : ,
semaphore is green (Invariant))

If n readers in the

critical section, WHY?

then nreaders > n

N i - Soaransrown —dee erast
< 1

R/W Lock l R/W Lock

nreaders incremented inside R/W lock
before entering the CS (i.e., the database)

Two Types of Monitors

Hoare Monitors Mesa Monitors

Tony Hoare Butler Lampson

Different semantics as to what happens when
a thread waiting on a condition is alerted that

the condition holds

Hoare Monitors

Tony Hoare, 1974

@ Syntactic sugar above split binary semaphores

a

monitor: one thread can execute at a time
wait(cond. var.): thread waits for given condition

signal(cond. var.): transfer control to a thread waiting for the
given condition, if any

Sinular constrect

/9/‘0/90580/ A}/
Per Brinch Hansen

Hoare Monitors
In Harmony

import synch

def Monitor() returns monitor:
monitor = synch.Lock()

PIUN 362Z‘e

def enter(mon):
synch.acquire(mon)

def exit(mon):
synch.release(mon)

def Condition() returns condition:
condition = { .sema: synch.BinSema(True), .count: 0 }

def wait(cond, mon):
cond—count +=1
exit(mon)
synch.acquire(?cond— sema)
cond— count —=

wa/f/‘nﬁ 3dZ‘ e

def signal(cond, mon): pa\SSe\S control/ /‘Mmea//az(e/y ?
if cond— count > 0: |

synch.release(?cond—sema) ‘ ‘ o
enter(mon) a nho—op £ no one 15 a)azz‘/ng./

What happens when a
thread signals?

® Hoare semantics:

o signaling thread is suspended and,
atomically, ownership of the lock is
passed to one of the waiting threads,
whose execution is immediately resumed.

o signaling thread is resumed if former
waiter exits monifor, or if it waits again

Producer/Consumer
with Bounded Buffer

import hoare

def BoundedBuffer(size) returns buffer:
buffer = {
.mon: hoare.Monitor(),
.prod: hoare.Condition(), .cons: hoare.Condition().
buf: { z:() for z in {1..size} Y, o/ rcsi/ar BeefFer
Jhead: 1, .tail: 1,
.count: 0, .size: size

© (o] 3 (=) (9] [w N -

o
o

}

- Adef put(bb, item):

enter montor hoare.enter(?bb—mon)
if bb— count == bb— size:

15 hoare.wait(?bb— prod, 7bb—mon)

16 bb—buf[bb—tail]| = item

17 bb—tail = (bb—tail % bb—rsize) + 1 E

18 bb—count +=1

- hoare.signal(?bb— cons, 7bb—mon) 5';9’762/ a Consdumer
exi? monntor hoare.exit(?bb—mon)

a)a/‘Z‘ £ £ L(/ /

Producer/Consumer
with Bounded Buffer

import hoare

def BoundedBuffer(size) returns buffer:

buffer = {
.mon: hoare.Monitor(),
.prod: hoare.Condition(), .cons:

buf: { z:() for z in {l..size} }, = circelar betFer

Jhead: 1, .tail: 1,
.count: 0, .size: size
} i

Fr=~~—-~ AT RO A t

© (o] 3 (=) (9] [w N -

def put(bb, item):
enter momor hoare.enter(?bb—mon)

if bb— count == bb— size:

hoare.wait(?bb—prod, 7bb—mon) coa i £ul/ '
bb—buf [bb—tail] = item
bb—tail = (bb—tail % bb—rsize) + | 5,5,74/() passes the

bb—count +=1
hoare.signal(?bb— cons, 7bb—mon) baton immediately

exi? montor hoare.exit(?bb—mon) if Chere are warting

ConsSuUrers

Producer/Consumer
with Bounded Buffer

Y def get(bb) returns next:
enter montor hoare.enter(?bb—mon)

if bb— count ==
hoare.wait(?bb— cons, 7bb—mon)

next = bb—buf|bb—head]
bb—head = (bb—head % bb—size) + 1

bb—count = 1
hoare.signal(?bb—prod, 7bb—mon)

exit morntor hoare.exit (? bb—)mon) 5/3/762/0 passes Zhe
badon immediatel v
£ Chere are wd/Z‘/‘ng

warl /£ empz‘y

|
|
f
i

5/5/762/ a producer

/arodaaeré

Mesa Monitors

Mesa Language, Xerox PAak 1980

@ Syntactically similar to Hoare monitors
Very

o monitors and condition variables differest From

%oare ‘5

@ Semantically closer to busy waiting montors

o wait(cond. var.): wait for condition, but may get ®ack

the CPU when condition is not satisfied (!)

o notify(cond. var.): move to ready queue a thread
waiting for the condition, if any, but dont transfer
control (i.e., give the CPU) to it

o notifyAll(cond. var.): move to ready queue all
threads waiting for the condition, but dont
transfer control (i.e., give the CPU) to any of them

What are the
implications?

Hoare Mesa
o Signaling is atomic with the o notify() and notifyAll() are hints
resumption of waiting thread o adding them affects
o shared state cannot change performance, never safety
before waiing thread is @ Shared state must be checked in
resumed a loop (the condition could have
o safety requires to signal only changed since the thread was
when condition holds notified!)
@ Shared state can be checked @ Simple implementation

using QAsIaTSne o Resilient to spurious wakeup
@ Makes it easier to prove liveness

@ Tricky to implement

Hoare vs Mesa Monitors

Hoare Mowltors

Mesa Mowlttors

Batown passing approach

If at furst you don't succeed...
sleep § try again when the
stars seem aligwned!

stgnal passes baton

wotify (all) moves watting
threads back to reaalg quene

Used log most books

uwsed bgj most real systems

Mesa rionmtors cwon

lhe Cest of Zine...

T —

———

Mesa Monitors
iIn Harmon

!

. | Condition: consists of a
def Condition() returns condition:

condition = bag.empty() 5623 of hreads wafz‘/ng

|
— — ’
E

def wait(c, lk):

var cnt = (
let _, ctz = save(): coat: wunlock+add ¢hread
atormcally; o contex? Zo 5&3 of wailers
cnt = bagmultiplicity(le, ctz)

1
2
3
4
5
6
7
8
9

lc = bag.add(!c, ctz) N—
llk = False

atomically when (not !/k) and (bag.multiplicity(lc, ctz) <= cnt):
llk = True

—
o

|

[
-

-
N

E

def notify(c): noZ‘/fy D remeve one warler Fron
1 1 ' ': :
zieriezly 1 e = begeni) Zhe 5&3 of’ suspended Chreads

[
w

[
'

[
(&)}

lc = bag.remove(!c, bag.bchoose(!c))

-
()]

[y
N

def notifyAll(c): |
lc = bag.empty() noz‘/r”y4// ! remove all warlers Fron |

e —
1 ZAhe Adﬁ of’ suspended ZAreads ,

-
»]

[
©

Reader/Writer Lock
Specification (again)

def RWlock() returns lock:
lock = { .nreaders: 0, .nwriters: 0 }

def read acquire(rw):
atomically when rw—nwriters ==
rw—nreaders += 1

Betler o asserd rw — nreaders > 0
def read release(rw):

atomically rw—nreaders ——= 1

© v 4] ~ (o)) (%)) = w (V] =

=
o

def write_acquire(rw):
atomically when (rw—nreaders + rw—nwriters) == 0:
rw—nwriters = 1

=
=

=
[\V)

[
W

[y
'S

def write release(rw):

atomically rw—nwriters = 0
B e ——

=
ot

[y
o

Reader/Writer lock
with Mesa monitors

TZ /s the rmuwlex A
protects nreaders and

def RWlock() returns lock: neoriters, not the K/ W lock!

from synch import *

lock = {
.nreaders: 0, .nwriters: 0, .mutezr: Lock(),
.r_cond: Condition(), .w_cond: Condition()

} 1

Invariants

0 If n readers in the critical section, then nreaders > n

0 If n writers in the critical section, then nwriters > n

o (nreaders > 0 A nwriters = 0) V (nreaders = 0 A nwriters = < 1)

R/W Lock, Reader

def read_acquire(rw):
10 acquire(? rw—mutex)
11 @ —nwriters > 0: Siplar 2o
12 wait(?rw—r_cond, ?7rw—mutex) , _ Y Wai

Zin
13 rw—nreaders += 1 — i
14 release(?rw—mutex)

15

16 def read_release(rw):

17 acquire(?rw—mutex)
18 rw—nreaders —= 1 {

19 if rw—nreaders == 0: |, . . .,
20 notify(?rw—w_cond) ‘s - —J
21 release(?rw—mutex) |

T —————— T ——————

R/W Lock, Writer

def write_acquire(rw):

acquire(?rw—mutex)
rw—)nreaders + rw—nwriters) > 0:

wait(?rw—w_cond, ?rw—mutex) St 2o
rw—nwriters = 1 >
BL(SV Wardin
release(?rw—mutex) — e

def write release(rw):
acquire(?rw—mutex)
rw—nwriters = 0 :
notify All(?rw—r_cond) | don ¢ #orget
notify(?rw—w_cond) anyone!
release(?rw—mutex) —

Conditional Critical Sections

Let me count the ways...

Split Binary
Semaphores

Mesa Mowltors

Busy Wwatting

Use a lock, a collection
of condition variables,
and a Loop

Use a lock Use a collection of
and a Loop biwarg semaphores

Easg to

e Just follow the recipe Notifying is tricky

Basy to understand | Tricky to understand uf

, Easy to understand the code
the code you don't know the reclpe d

Ok-ish fortrue | qood for virtual threading.
multicore, but bad | Thread only runs when Lt

for virtual threads can make progress

Good for both multicore anol
virtual threading

