
Previously, on CS4410…

Back to

Split Binary Semaphores

Nurse’s office: critical section protecting
variables that determine when to wait
Rooms: waiting conditions

C

At any time, exactly one
semaphore or thread is green

(and thus, at most one
semaphore is green (Invariant))

Back to

Split Binary Semaphores

Nurse’s office: critical section protecting
variables that determine when to wait
Rooms: waiting conditions

C

At any time, exactly one
semaphore or thread is green

(and thus, at most one
semaphore is green (Invariant))

R/W Lock R/W Lock

If readers in the
critical section,

then

n

nreaders ≥ n
WHY?

C

R/W Lock R/W Lock

 incremented inside R/W locknreaders
before entering the CS (i.e., the database)

Two Types of Monitors

Different semantics as to what happens when
a thread waiting on a condition is alerted that

the condition holds

Hoare Monitors Mesa Monitors

Tony Hoare Butler Lampson

Hoare Monitors
Syntactic sugar above split binary semaphores

monitor: one thread can execute at a time

wait(cond. var.): thread waits for given condition

signal(cond. var.): transfer control to a thread waiting for the
given condition, if any

Tony Hoare, 1974

Similar construct
proposed by

Per Brinch Hansen

in 1973

Hoare Monitors

in Harmony

main gate

waiting gate

passes control immediately

a no-op if no one is waiting!

What happens when a
thread signals?

Hoare semantics:

signaling thread is suspended and,
atomically, ownership of the lock is
passed to one of the waiting threads,
whose execution is immediately resumed.

signaling thread is resumed if former
waiter exits monitor, or if it waits again

Producer/Consumer

with Bounded Buffer

circular buffer

enter monitor

exit monitor

wait if full

signal a consumer

Producer/Consumer

with Bounded Buffer

circular buffer

enter monitor

exit monitor

wait if full

signal() passes the
baton immediately
if there are waiting

consumers

Producer/Consumer

with Bounded Buffer

enter monitor

exit monitor

wait if empty

signal a producer

signal() passes the
baton immediately
if there are waiting

producers

Mesa Monitors
Syntactically similar to Hoare monitors

monitors and condition variables

Semantically closer to busy waiting

wait(cond. var.): wait for condition, but may get back
the CPU when condition is not satisfied (!)

notify(cond. var.): move to ready queue a thread
waiting for the condition, if any, but don’t transfer
control (i.e., give the CPU) to it

notifyAll(cond. var.): move to ready queue all
threads waiting for the condition, but don’t
transfer control (i.e., give the CPU) to any of them

Mesa Language, Xerox PAak 1980

Very
different from

Hoare’s
monitors

What are the
implications?

 Hoare

Signaling is atomic with the
resumption of waiting thread

shared state cannot change
before waiting thread is
resumed

safety requires to signal only
when condition holds

Shared state can be checked
using an if statement

Makes it easier to prove liveness

Tricky to implement

 Mesa

notify() and notifyAll() are hints

adding them affects
performance, never safety

Shared state must be checked in
a loop (the condition could have
changed since the thread was
notified!)

Simple implementation

Resilient to spurious wakeup

Hoare vs Mesa Monitors

Hoare Monitors Mesa Monitors

Baton passing approach
If at first you don’t succeed…

sleep & try again when the
stars seem aligned!

signal passes baton
notify(all) moves waiting

threads back to ready queue

Used by most books used by most real systems

Mesa monitors won
the test of time…

Mesa Monitors

in Harmony

Condition: consists of a
bag of threads waiting

wait: unlock+add thread
context to bag of waiters

notify: remove one waiter from
the bag of suspended threads

notifyAll: remove all waiters from
the bag of suspended threads

Reader/Writer Lock
Specification (again)

Better to assert ………….…………..…………. <latexit sha1_base64="nflTCXKa8eqCZ3oUCq92k022GdU=">AAACAXicdVDLSgMxFM34rPVVdSO4CRbB1ZDpuxstuHFZwT6gLSWTpm1oJjMkGUspdeM3+AduXCji1o8QxI1/IP6CG9NWQUUPBA7nnMvNPW7AmdIIvVgzs3PzC4uRpejyyuraemxjs6z8UBJaIj73ZdXFinImaEkzzWk1kBR7LqcVt3c09itnVCrmi1M9CGjDwx3B2oxgbaRmbFv265J1uhpL6fehMLMtEz9AzVgc2SibQLkURHbSQZlc2pB0Lp/Ip6Bjownih2+Pl8+v71axGXuqt3wSelRowrFSNQcFujHEUjPC6ShaDxUNMOnhDq0ZKrBHVWM4uWAE94zSgm1fmic0nKjfJ4bYU2rguSbpYd1Vv72x+JdXC3U71xgyEYSaCjJd1A451D4c1wFbTFKi+cAQTCQzf4WkiyUm2rQQNSV8XQr/J+WE7WTs9AmKF5JgigjYAbtgHzggCwrgGBRBCRBwDq7ADbi1Lqxr6866n0ZnrM+ZLfAD1sMHRpCcmA==</latexit>

rw ! nreaders > 0

Reader/Writer lock

with Mesa monitors

Invariants
If readers in the critical section, then n nreaders ≥ n

If writers in the critical section, then n nwriters ≥ n
(nreaders ≥ 0 ∧ nwriters = 0) ∨ (nreaders = 0 ∧ nwriters = ≤ 1)

It is the mutex that
protects nreaders and

nwriters, not the R/W lock!

R/W Lock, Reader

but needs this

Similar to
Busy Waiting

R/W Lock, Writer

don’t forget
anyone!

Similar to
Busy Waiting

Conditional Critical Sections

Busy Waiting Split Binary
Semaphores

Mesa Monitors

Use a lock
and a loop

Use a collection of
binary semaphores

Use a lock, a collection
of condition variables,

and a loop

Easy to
write the code

Just follow the recipe Notifying is tricky

Easy to understand
the code

Tricky to understand if
you don’t know the recipe

Easy to understand the code

Ok-ish for true
multicore, but bad
for virtual threads

Good for virtual threading.
Thread only runs when it

can make progress

Good for both multicore and
virtual threading

Let me count the ways…

