Previously, on CS4410...

Reader/Writer Lock
Specification

def RWlock() returns lock: lock implemented in Lerrs
lock = { .nreaders: 0, .nwriters: 0 } | o = fecks on tewo variables

def read acquire(rw): Chat must be wupdated atorically!
atomically when rw—nwriterss=="u:
rw—nreaders += 1

Betler 2o asserd rw — nreaders > ()
def read release(rw):

atomically rw—nreaders ——= 1

© v 4] ~ (o] (%)) = w (V] =

=
o

def write_acquire(rw):
atomically when (rw—nreaders + rw—nwriters) == 0:
rw—nwriters = 1

[
[

=
[\V)

[
W

[y
'S

def write release(rw):

atomically rw—nwriters = 0
T —

=
ot

[y
(o]

o g ~ =) o - w [N L

[
o

from synch import Lock, acquire, release

def RWlock() returns lock:
lock = { .lock: Lock(), .nreaders: 0, .nwriters: 0 }

def read _acquire(rw):
acquire(?rw—lock)
while rw—nwriters > 0:} Busy
release(?rw—lock)
acquire(?rw—lock)
rw—nreaders += 1

release(?rw—lock)

wat /ng

def read release(rw):
acquire(?rw—lock)
rw—nreaders —= 1
release(?rw—lock)

def write acquire(rw):
acquire(?rw—lock)
while (rw—nreaders + rw—nuwriters) > 0:
release(?rw—lock)
acquire(?rw—lock)
rw—nwriters = 1
release(?rw—lock)

def write release(rw):
acquire(?rw—lock)
rw—nwriters = 0
release(?rw—lock)

T —

Busy-Waliting Implementation

7o ensure thad rreaders and
neoriters are wpdated
atorically, we need Zo
access Cherr in rutua/

eXC/ USION !z

Yence, Zhe implementation
of the K. /«)/oc,é includes a

rmicttex lock — 2o protect

accesSSes o nreaders and

neoriters

Waiting with
Semaphores

import synch

condition = BinSema(True)

By imdial /Z/nj

def TO(): a semapliore
acquire(?condition) Zo
- QC?L(/‘rea’ "

def T1() (e, True)

release(?condition) we can

£ orce Q
thread 2o

spawn(T0) >
Loy

spawn(T1)

What else can we do
with binary semaphores?

Conditional
Critical Sections

@ A critical section with an associated condition

o queue.get(), but wait until queue is not empty

» dont want two threads to run code at the
same time

» dont want any thread to run queue.get()
when the queue is empty

o print(), but wait until printer is idle

o RW.read_acquire(), but only when there are
no writers in the critical section

One Critical Section,
multiple conditions

® Some conditional critical sections can have
mulfiple conditions:
o R/W lock

» readers are waiting for writers fo leave

» writers are waiting for readers and writers
to leave

0 bounded queue
» dequeuers waiting for queue to be not empty

» enqueuers waiting for queue to be not full

High level idea:
selective baton passing

® To execute inside the CS, thread needs the baton

@ Threads can be waiting for various conditions
o while they do, they dont hold the baton

@ When a thread with the baton leaves the CS, it
checks whether there are threads waiting for a
condition that now holds

o If so, it passes the baton to one such thread

@ If not, the CS is vacated, and the baton can be
picked up by another thread when it comes along

Split Binary Semaphores

Hoare 1973

@ Implement baton passing with multiple binary
semaphores

® /N conditions require //' + 1 binary semaphores

o one of each condition

o one fo enter the CS in the first place

Split Binary Semaphores

@ Invariant: At most one of these semaphores is
released (i.e., its value is False)

o If all are acquired (True), baton held by some
thread (some thread in CS)

o If one is released (False), no thread holds baton
(CS is empty)

» if it is the “entry” semaphore, no thread is waiting
on a condition that holds—any thread can enter CS

» if it is one of the condition semaphores, some
thread waiting on that condition can enter CS

Jabs...

Nurse administers C and F vaccines, one patient at a fime

if thread, in CS if thread, outside CS
=] if sema, released (False) if sema, acquired (True)
Covid room Flu waiting room

another
nurse

N @ 58 e
o @ = Semaphores
W

B Nurses office
Threads ™ .4

shot

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm) if thread, in CS if thread, outside CS
—— if sema, released (False) if sema, acquired (True)
Covid room Flu waiting room
another
nurse

Needs ,
Flu @ e, “,’. \ /
shot < < Sema P hores

! Nurses office
Threads =%

L At any time, exactly one
Nurses office: critical section semaphore or thread is green
Rooms: waiting conditions (and thus, at most one

semaphore is green (Invariant))

What this models

® Reader/writer lock
o Nurses office: critical section
o Waiting Room 1: readers waiting for writer to leave

o Waiting Room 2: writers waiting for readers and writer
to leave

@ Bounded queue
o Nurses office: critical section

o Waiting Room 1: dequeuers waiting for non-empty queue

o Waiting Room 2: enqueuers waiting for non-full queue

Jabs...

Nurse administers C and F vaccines, one patient at a fime

[
pEdaaet
bk ke]

if sema, released (False)

if thread, in CS if thread, outside CS
if sema, acquired (True)

Covid room Flu waiting room

another
nurse

Needs
Flu 5 R p,
shot N\, @_ o

Ve Nurses office

Covid
shot

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm) if thread, in CS if thread, outside CS
=] if sema, released (False) if sema, acquired (True)
Thread 1 Covid room Flu waiting room
entered CS

another
nurse

@
shof\® _.___” _______ ,

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm | if thread, in CS if thread, outside CS
o if sema, released (False) if sema, acquired (True)
Thread i Covid room Flu waiting room
entered CS

another
nurse

e
shot ® /

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm | if thread, in CS if thread, outside CS
—— if sema, released (False) if sema, acquired (True)
Thread 1 Covid room Flu waiting room

needs to wait |
for Condition 1

another
nurse

e D D
shot ¢
® /

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm | if thread, in CS if thread, outside CS
—— if sema, released (False) if sema, acquired (True)
No thread waiting Covid room Flu waiting room
for a condition i
that holds

another
nurse

e D D
shot ¢
® /

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm) if thread, in CS if thread, outside CS
ekl if sema, released (False) if sema, acquired (True)
No thread waiting Covid room Flu waiting room
for a condition i
that holds
another

]
Needs Y
Flu 5 P .:») :
shot N :

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

R
9&;2‘\3 a

if thread, in CS if thread, outside CS
if sema, released (False)

if sema, acquired (True)

Covid room Flu waiting room

Thread 2 can
enter the CS

another
nurse

Needs
shot

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

R
9&;2‘\3 a

{ if thread, in CS { if thread, outside CS

if sema, released (False) if sema, acquired (True)

Covid room Flu waiting room

Thread 2 entered :
the critical section

Needs
Flu ?
shot ¢

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm | if thread, in CS if thread, outside CS
—— if sema, released (False) if sema, acquired (True)
Thread 2 enables Covid room Flu waiting room
Condition 1 and 1
wants to leave @

- D oy
shot ¢
® 4

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

R
9&;2‘\3 a

if thread, in CS if thread, outside CS
if sema, released (False)

if sema, acquired (True)

Covid room Flu waiting room

Thread 2 left,
Condition 1 holds

Needs

Flu
sho’r\®
Nurses office
At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm | if thread, in CS if thread, outside CS
o if sema, released (False) if sema, acquired (True)
Thread 1 (and Covid room Flu waiting room

only Thread 1) !
can enter CS

Needs \
Flu A @
shot ¢

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

R
9&;2‘\3 a

if thread, in CS if thread, outside CS
if sema, released (False)

if sema, acquired (True)

Thredd 1 rrees | Covid room Flu waiting room

CS again

Needs :
Flu v @
shot ¢
® 'ﬂ> 'n'>

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm | if thread, in CS if thread, outside CS
o if sema, released (False) if sema, acquired (True)
Threadit Covid room Flu waiting room
leaves

Needs
Flu @
shot™ i o . e R B - >
® 'ﬂ> 'n'>

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm | if thread, in CS if thread, outside CS
o if sema, released (False) if sema, acquired (True)
Thread 1 Covid room ’ Flu waiting room
done

Needs
shot \ (*".': J:j;\ --- > @

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm) if thread, in CS if thread, outside CS
o if sema, released (False) if sema, acquired (True)
Thread 3 Covid room Flu waiting room
enters critical | '
section

Needs
shot \(: B . ..----aEEcTCT @

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm | if thread, in CS if thread, outside CS
o if sema, released (False) if sema, acquired (True)
Thread @ Covid room Flu waiting room
in CS
> ______________________ »® > o0
£ Nurses office
At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm | if thread, in CS if thread, outside CS
o if sema, released (False) if sema, acquired (True)
Thread 3 Covid room Flu waiting room

needs to wait !

for Condition 2
> >

Nurses office

At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Jabs...

Nurse administers C and F vaccines, one patient at a fime

mm) if thread, in CS if thread, outside CS
o if sema, released (False) if sema, acquired (True)
Thread 3 Covid room Flu waiting room
waiting for | '
Condition 2
Nurses office
At any time, exactly one
Nurses office: critical section semaphore or thread is green

Rooms: waiting conditions

Reader/Writer Lock
Specification (again)

def RWlock() returns lock:
lock = { .nreaders: 0, .nwriters: 0 }

def read acquire(rw):
atomically when rw—nwriters ==
rw—nreaders += 1

Betler o asserd rw — nreaders > 0
def read release(rw):

atomically rw—nreaders ——= 1

© v 4] ~ (o] (%)) = w (V] =

=
o

def write_acquire(rw):
atomically when (rw—nreaders + rw—nwriters) == 0:
rw—nwriters = 1

=
=

=
[\V)

[
W

[y
'S

def write release(rw):

atomically rw—nwriters = 0
B e ——

=
ot

[y
(o]

Reader/Writer Lock:
Implementation

from synch import BinSema, acquire, release

def RWlock() returns lock:
lock = {

.nreaders: 0, .nwriters: 0, .mutez: BinSema(False),
.r_gate: { .sema: BinSema(True), .count: 0 },
.w_gate: { .sema: BinSema(True), .count: 0 }

2 ~ [} < [w N —

}

Accounting Invariants

o nreaders : Hreaders in the CS O If n readers in the critical section,
then nreaders > n

o r_gate.count : #Hreaders waiting

to enter CS o If n writers in the critical section,

. . : e
0 nwriers : #writers in the CS Then nwriters 2 n

0 w_gate.count : #Hwriters waiting to 0V (nreaders 2 0 A nwriters = 0)

enter CS | V (nreaders = 0 A nwriters = < 1)

Reader/Writer Lock:
Implementation

18 def read_acquire(rw):
J 19 acquire(?rw—mutex) ester srain gate
waiting condition 1f rw—nwriters > 0:
rw—r_gate.count += 1; release_one(rw) /eave Nte:

erter reader gate acquire(?rw—r_gate.sema); rw—r_gate.count —= 1 acouire

w—nreaders += 1 enfe/‘/‘hg £ CS and release
release_one(rw)

leave: /el olhers Z‘ry oo operaz‘/oné

alternate
def read release(rw):

rno specia/ acquire(?rw—mutex); rw—nreaders —= 1; release_one(rw),

a)a/lfl‘nﬁ condition ’

Reader/Writer Lock:
Implementation

29 def write_acquire(rw): |
J 30 acquire(?rw—mutex) =7 71w gce
waiting condition 1f (rw—snreaders + rw—nwriters) > 0:
32 rw—w_gate.count += 1; release_one(rw)

enter writer gate acquire(?rw—w_gate.sema); rw—w_gate.count —= 1
34 w—nwriters += 1

35 release_one(rw) Similar structure
Zo redo/._QC?a//—e()

36

37 def write_release(rw):
38 acquire(?rw—mutex); rw—nwriters —= 1; release_one(rw)

Reader/Writer Lock:
Implementation

| when /ea\//ng Che critical section: ’

T

def release_one(rw):
if (rw—nwriters == 0) and (rw—r_gate.count > 0):
release(?rw—r_gate.sema)
elif ((rw—nreaders + rw—nwriters) == 0) and (rw—w_gate.count > 0):
release(?rw—w_gate.sema)
else:
release(?rw—mutex)

IF no woriters in Zhe
Cridical Section and
Zhere are readers wd/‘z‘/ng

Z/?en / et A

/‘eda/e)‘ /hr) ./

— —

Reader/Writer Lock:
Implementation

| when /ea\//ng Che critical section: ’

T

def release_one(rw):
if (rw—nwriters == 0) and (rw—r_gate.count > 0):
release(?rw—r_gate.sema)
elif ((rw—nreaders + rw—nwriters) == 0) and (rw—w_gate.count > 0):
release(?rw—w_gate.sema)
else:
release(?rw—mutex)

IF no woriters in Zhe
Cridical Section and
Zhere are readers wd/‘z‘/ng

Z/?en / et A

/‘eda/e)‘ /hr) ./

— —

Reader/Writer Lock:
Implementation

| when /ea\//ng Che critical section: ’

T

def release_one(rw):
if (rw—nwriters == 0) and (rw—r_gate.count > 0):
release(?rw—r_gate.sema)
elif ((rw—nreaders + rw—nwriters) == 0) and (rw—w_gate.count > 0):
release(?rw—w_gate.sema)
else:
release(?rw—mutex)

I no readers nor
eoriters in the Critica/ | Zhen /et a

Section and there are /

wr /‘Z‘ef‘ /‘/'7.

writers wat /ng

T — —

Reader/Writer Lock:
Implementation

| when /ea\//ng Che critical section: ’

T

def release_one(rw):
if (rw—nwriters == 0) and (rw—r_gate.count > 0):
release(?rw—r_gate.sema)
elif ((rw—nreaders + rw—nwriters) == 0) and (rw—w_gate.count > 0):
release(?rw—w_gate.sema)
else:
release(?rw—mutex)

I no readers nor
eoriters in the Critica/ | Zhen /et a

Section and there are /

wr /‘Z‘ef‘ /‘/'7.

writers wat /ng

T — —

Reader/Writer Lock:
Implementation

| when /ea\//ng Che critical section: ’

T

def release_one(rw):
if (rw—nwriters == 0) and (rw—r_gate.count > 0):
release(?rw—r_gate.sema)
elif ((rw—nreaders + rw—nwriters) == 0) and (rw—w_gate.count > 0):
release(?rw—w_gate.sema)
else:
release(?rw—mutex)

/et
dhy one 1h !

Ot Ahereorse...

Reader/Writer Lock:
Implementation

| when /ea\//ng Che critical section: ’

T

def release_one(rw):
if (rw—nwriters == 0) and (rw—r_gate.count > 0):
release(?rw—r_gate.sema)
elif ((rw—nreaders + rw—nwriters) == 0) and (rw—w_gate.count > 0):
release(?rw—w_gate.sema)
else:
release(?rw—mutex)

Can these Zewo | Whdd i1s 2he |

conditions Ae | effect of thad? |

reversed? |
— e

L —

Reader/Writer Lock:
Implementation

| when /ea\//ng Che critical section: ’

T

def release_one(rw):
if (rw—nwriters == 0) and (rw—r_gate.count > 0):
release(?rw—r_gate.sema)
elif ((rw—nreaders + rw—nwriters) == 0) and (rw—w_gate.count > 0):
release(?rw—w_gate.sema)
else:
release(?rw—mutex)

PIREE HEFEERS Does i let dll |

w/tiple readers
- pre recas Zhe readers in or

are a)CZ/AZ(/.n dha/ Q)
. J Just one?
writer leaves?

T— T—— T— ——

Reader/Writer Lock:
Implementation

18 def read_acquire(rw):

19 acquire(?rw—mutex) !

20 if rw—nwriters > 0: |

21 rw—r_gate.count += 1; release_one(rw) ;
l
|
F

22 acquire(?rw—r_gate.sema); rw—r_gate.count —= 1

23 rw—rnreaders += 1

24 release_one(rw)

25

26 def read release(rw): }

27 acquire(?rw—mutex); rw—nreaders —= 1; release_one(rw);
e

A Hierarchy of
Critical Sections

@ Again, we have two different critical sections...

@ ..that occur at different levels of abstraction

o the first relies a R/W lock
» protects access to some shared object (say, a DB)

» allows multiple readers in the CS

0 the second relies on split binary semaphores

> protects the shared variables (nreaders,
r_gate . count, etc) and implements the conditions
we use to implement R/W locks

» allows only one thread at a time in its CS
LLHEEEEEHIIESSESEHEESS

Starvation

@ Our R/W implementation can starve writers

@ Change the waiting and release conditions:

o when a reader tries to enter CS, wait if there is

> a writer in CS or
> writers at the write gate waiting fo enter CS

0 exiting reader prioritizes releasing a waiting
writer

0 exiting writer prioritizes releasing a waiting
reader
See Chapter 17 in the Harmony book

Conditional
Critical Sections

@ We know of two ways to implement them:

VV/ALTLWO

SPLLT \§»4u~15r171_?/4 SEWLAPNOYES

Wait for condition in loop, acquiring
lock before testing for condition, and
releasing it if condition does not hold

Use a collection of binary semaphores
and keep track of state, including
information about waiting threads

Easy to understand the code

State tracking is complicated

OK-ish for true multi-core, but bad
for virtual threads

Good for both multicore and virtual
threading

Language support?

@ Can the programming language be more
helpful here?

n Offer some helpful syntax

D or at least some library support

Enter Monitors

@ Collect shared data into an object/module
@ Define methods for accessing shared data

@ Separate the concerns of mutual exclusion
and condition synchronization

@ Monitors are comprised of
o one mutex lock, and

o zero or more condition variables for managing
concurrent access to shared data

69

Condition Variables

@ An abstraction for conditional synchronization
associated with a monitor

@ Enable threads to wait for a given condition to
hold while inside the monitor (after releasing
the monitor lock) and be alerted when the
condition holds

@ iCondition variable is a misnomer

o can neither be read nor set to a value

o think of a condition variable as a label associated with a
condition and a queue

o threads wait in the queue (inside the monitor) until
notified that condition holds

Resource Variables

® Each condition variable should be associated with a
resource variable (RV) tracking the state of the resource
that determines whether the condition holds

o e.g., tin a bounded buffer he number of buffer slots that have
been filled

o It is your job to maintain the RV!

@ Check its RV before calling wait() on a condition variable
to ensure the resource is truly unavailable

@ Once the resource is available, claim it (subtract the
amount you are using!)

@ Before notifying you are releasing a resource, indicate it
has become available by increasing the corresponding RV

Two Types of Monitors

Hoare Monitors Mesa Monitors

Tony Hoare Butler Lampson

Different semantics as to what happens when
a thread waiting on a condition is alerted that

the condition holds

