Testing a
Concurrent Queue?

import queue

def sender(gq, v):
queue.put(g, v)

def receiver(q):
let v = queue.get(q):
assert v in { None, 1, 2 }

o] o0 ~ o] <] — w (V] -

demoq = queue.Queue()

spawn sender(?demog, 1)
spawn sender(?demog, 2)
spawn receiver(?demoq)
spawn receiver(?demoq)

(=
o

(=
—

=
V)

ot
w

—
'S

T — T

Systematic Testing

@ Sequential case:
o Try all sequences consisting of 1 operation
» put or get
o Try all sequences consisting of 2 operations
> put+put, put+get, get+put, get+get
o Try all sequences consisting of 3 operations

D (XX J

How do we know if a
sequence IS correct?

@ We run the test program against both the
sequential specification and the implementation

® We check whether running the test program
against the implementation produces the
behaviors (e.g., returns the same values) as
running it against the sequential specification

Systematic Testing

@ Concurrent case:
o Cant run same sequence of operations on both

» even if both are correct, nondeterminism of
concurrency may have the two runs produce
different results

o Instead:

» Try all interleavings of 1 operation
» Try all inferleavings in a sequence of 2 ops
» Try all interleavings in a sequence of 3 ops

How do we know if an
interleaving is correct?

@ We run the test program against both the
concurrent specification and the implementation

o this produces two DFAs, which capture all
possible behaviors of the program

@ We then verify whether the DFA produced
running against the specification is the same as
the one produced running against the
implementation

(Queue test program

import queue

const NOPS = 4
q = queue.Queue()

def put_test(self):

print("call put", self) | H a/wczyé & Jeas? ore
queue.put(?q, self) |

print("done put", self) | pé(Z‘ and one 3ef

def get_test(self):
print("call get", self)

let v = queue.get(?q): |
print("done get", self, v) NOPS Zhreads,

nondeterrinsticalll
nputs = choose {1..NOPS-1} oneecerrumStICally

for ¢ in {1..nputs}: | 6/7005/‘/?3* lo execwle |
spawn put_test(t) |
for 7 in {1..NOPS—nputs}: | paz‘ or 385
spawn get_test(1) |

O —

But which behaviors
of the implementation
are correct?

Life of an
Atomic Operation

process invokes process
operation continues

The effect should be that

of the operation
happening instantaneously
sometime in this interval

Time

Life of an
Atomic Operation

operation
happens
atomically

Time

Life of an
Atomic Operation

operation
happens
atomically

Time

Life of an
Atomic Operation

operation
happens
atomically

Time

Correct Behaviors

Suppose the queue is initially empty

put (3)

get () < 3

Time

Correct Behaviors

Suppose the queue is initially empty

put (3)

get () < None

Time

Correct Behaviors

Suppose the queue is initially empty

put (3)

get () < None

Correct Behaviors

Suppose the queue is initially empty

put (3)

get () <-_- 3

Time

Queue test program

["done get", 1, None call put", 1]

["done get", 1, 1]

"done get", 1, None

["done put", 1]

["call get", 1] ["done get", 1, 1]

} $ harmony -c NOPS=2 -o spec.png code/qtestpar.hny i

‘ N —

Testing:
comparing behaviors

'$ harmony -o queued4.hfa code/qtestpar.hny

$ harmony -B queue4.hfa -m queue=queueconc code/qtestpar.hny

@ The first command outputs the behavior of
the running test program against the
specification in file queue4.hfa

@ The second command runs the test program
against the implementation and checks if its
behavior matches that stored in queue4.hfa

Review

@ Concurrent programming is hard!
o Non-Determinism

o Non-Atomicity

@ Critical Sections simplify things
o mutual exclusion

O progress

® Critical Sections use a lock
0 Threads need lock to enter the CS

o Only one thread can get the sections lock

@ Models access to an object (e.g., a
database), shared among several threads

o some threads only read the object
o others only write it

@ Safety
(#r 2 0)F0 (0 <sedi IR U = 0))

How to get more
concurrency?

@ Idea: allow multiple read-only operations to
execute concurrently

o In many cases, reads are much more
frequent than writes

@ Reader/Writer lock

o at most one writer, and, if no writer, any
number of readers

(#r = 0) A= SREIGEE R (7w 0))

166

Reader/Writer Lock
Specification

def RWlock() returns lock:
lock = { .nreaders: 0, .nwriters: 0 }

def read acquire(rw):
atomically when rw—nwriters ==
rw—nreaders += 1

def read release(rw):
atomically rw—nreaders ——= 1

© v 4] ~ (o] (%)) = w (V] =

=
o

=
=

def write_acquire(rw):
atomically when (rw—nreaders + rw—nwriters) == 0:
rw—nwriters = 1

=
[\V)

[
W

[y
'S

def write release(rw):

atomically rw—nwriters = 0
B e ——

=
ot

[y
(o]

10

11

12

13

14

15

16

17

18

19

R/W Locks: Test for
Mutual Exclusion

import RW

const NOPS = 3

Me/tiple
Keaders No
def thread():

while choose({ False, True }): triter
if choose({ "read", "write" }) 5f= "read":
RW.read acquire(?rw)
T, CS rcs: assert (countLabel(rcs) >= 1) and (countLabel(wcs) == 0)
RW.read release(?rw)
else: # write
RW.write_acquire(?rw)
Z»n CS wes: assert (countLabel(rcs) == 0) and (countLabel(wcs) == 1)
RW.write_release(?rw)

rw = RW.RWlock()

for ¢ in {1..NOPS}: | pIriterVand
spawn thread|()

T — m MNo (ceaders mm

Cheating R/W
Lock Implementation

import synch

def RWlock(): |
result = synch.Lock() |

def read acquire(rw):
synch.acquire(rw);

def read release(rw):
synch.release(rw);
11 ‘
12 def write acquire(rw): |
13 synch.acquire(rw);
14 |
15 def write release(rw):

16 synch.release(rw); |
T — ———

Cheating R/W
Lock Implementation

import synch

def RWlock():
result = synch.Lock() | ' &, /o, get's

def read acquire(rw): | | & lock ad a
synch.acquire(rw); Zi el
def read release(rw): |
10 synch.release(rw); | 77 s
o | PUSSI/g
12 def write_acquire(rw): 4 :
13 synch.acquire(rw); | e/aviors
14 | allowwed Ay Zh e

15 def write release(rw): | Specificalion !
16 synch.release(rw); ~
|

Cheating R/W
Lock Implementation

import synch
I /s
PUSSINg

Only |
(eader 3356

def RWlock():

|
|
|
result = synch.Lock() |

éeth/‘orS

def read acquire(rw): a lock at a a//ocoed A Zhe
synch.acquire(rw); el
: Specification
def read release(rw):

synch.release(rw);

Qo o -1 (o) o [W [V —

—
o

—
(S

[
[

def write_acquire(rw):
synch.acquire(rw);

Bud, at /edéz(,

= = [
o - w

[y
)

l
|
?
|
def write release(rw): No Ada/ 58/7@//‘0/‘./

synch.release(rw)
— T — —_—

Busy-Waliting Implementation

from synch import Lock, acquire, release

def RWlock() returns lock:

lock = { .lock: Lock(), .nreaders: 0, .nwriters: 0 } 4@?&(/}‘8 f/?e /Oc;é

def read _acquire(rw): A '
acquire(?rw— lock) 7255 Z‘he CO/’?O/ / Z(/ OoNn
while rw—nwriters > 0:}

o g ~ =) o - w N L

Busy (elease Che /. oclé |

wart /ng I

release(?rw—lock)
acquire(?rw—lock)
rw—nreaders += 1

release(?rw—lock) (QPQQZ

def read release(rw):
acquire(?rw—lock)
rw—nreaders —= 1
release(?rw—lock)

def write acquire(rw):
acquire(?rw—lock) -
while (rw—nreaders + rw—nuwriters) > 0: —
release(?rw—lock) 7
acquire(?rw—lock) IZ hd\s Z/Iﬁ Sa e
rw—nwriters = 1

release(?rw—lock) Ae/za\//‘of\s aS Z(/le

def write release(rw):
acquire(?rw— lock) . .
rw—nwriters = 0 1 /7 P / e/)’}el?z(dz(1ON -/

release(?rw—lock)

———

o g ~ =) o - w N L

Busy-Waliting Implementation

from synch import Lock, acquire, release

def RWlock() returns lock:
lock = { .lock: Lock(), .nreaders: 0, .nwriters: 0 }

def reed ez} Iz fias the same

while rw— nwriters > O:}

B//(Sy

ociting behaviors as the

release(?rw—lock)

acquire(?rw—lock)
rw—nreaders += 1
release(?rw—lock)

imp/ enmentalion!

def read release(rw):
acquire(?rw—lock)
rw—nreaders —= 1
release(?rw—lock)

def write acquire(rw): 7 .
acquire(?rw—slock) 2, rocCessS CO/’?Z/ nUHous / y

while (rw—nreaders + rw—nwriters) > 0:

release(?rw—lock) Schea/é(/ea/ ZO Z(/‘y fo

acquire(?rw—lock)
rw—nwriters = 1 . .
release(?rw—lock) 3€Z‘ Z‘/78 /OCIé even 1£ ¢

def write release(rw): 1S l?OZ av'a /625/8
acquire(?rw—lock)
rw—nwriters = 0
release(?rw—lock)

Conditional
Waiting

Conditional Waiting

@ Threads wait for each other fo prevent
mulfiple threads in the CS

@ But there may be other reasons:

0 Wait until queue is not empty before
executing get()

o Wait until there are no readers (or
writers) in a reader/writer block

Busy Waliting:
not a good way
o Wait until queue is not empty:
done = False
while not done:

next = get(q)
done = next != None

@ Wastes CPU cycles
@ Creates unnecessary contention

Binary Semaphores

Dijkstra 1962

iTHE BERATLES

Binary Semaphore

@ Boolean variable (much like a lock)

@ Three operations

o binsema = BinSema(False or True)

» initializes binsema

0 acquire (?binsema)

» waits until 'binsema is False, then
sets !binsema to True

o release(?binsema)
» sets !binsema to False

» can only be called if !binsema = True

P&V

@ Dijkstra was Dutch

0 He said Probeer-te-verlagen instead of
acquire - and shortened it to P

0 He said Verhogen instead of release -
and shortened it to V

o Still very popular nomenclature

0 To remember it:
» Procure (acquire)
» Vacate (release)

Binary Semaphore
- Specification

jef BinSema(acquired):
ult = acquired

f Lock():
result = BinSema('%i f)

jef acquire(binsema):
atomically when not !binsema:
Ibinsema =

11 o f release(binsema):l
assert !'binsema
atomically !binsema = False

Semaphores v. Locks

Locks

InttLa Ly “unlocked”
(False)

Biwarg Semaphores

cawn be tnitialized to False or
True

Usually acouired and
released logj the same
thread

can be acquired and released
by different threads

Mosttg wsed to
meLemew’c critieal
sectlons

cawn be used to impLemew’c
critical sections as well as
waiting for special conditions

Waiting with
Semaphores

import synch
Encode condition as a

condition = BinSema(True) binary Semaphore

v def To(): Wat for condition 2o
acquire(?condition) Come True

v def T1() Szgna/ condition has
release(?condition) Leampan D

wWhat
spawn(T0)

spawn(T1)

| /%gﬂ/ﬂené 1~

71 rUNS
£irst?

Semaphores can be
locks too!

lk = BinSema(False) BSIEr Ry ryEn

acquire(?1k) grad lock

r61eaSE(.Lk) release /oc,é

What else can we do
with binary semaphores?

