
Testing a

Concurrent Queue?

Ad hoc

Unsystematic

Systematic Testing

Sequential case:

Try all sequences consisting of 1 operation

put or get

Try all sequences consisting of 2 operations

put+put, put+get, get+put, get+get

Try all sequences consisting of 3 operations

…

How do we know if a
sequence is correct?
We run the test program against both the
sequential specification and the implementation

We check whether running the test program
against the implementation produces the
behaviors (e.g., returns the same values) as
running it against the sequential specification

Systematic Testing
Concurrent case:

Can’t run same sequence of operations on both

even if both are correct, nondeterminism of
concurrency may have the two runs produce
different results

Instead:

Try all interleavings of 1 operation

Try all interleavings in a sequence of 2 ops

Try all interleavings in a sequence of 3 ops

…

How do we know if an
interleaving is correct?

We run the test program against both the
concurrent specification and the implementation

this produces two DFAs, which capture all
possible behaviors of the program

We then verify whether the DFA produced
running against the specification is the same as
the one produced running against the
implementation

Queue test program

NOPS threads,
nondeterministically

choosing* to execute
put or get

* always at least one
put and one get

But which behaviors

of the implementation

are correct?

Life of an

Atomic Operation

Time

process invokes
operation

process
continues

The effect should be that
of the operation

happening instantaneously
sometime in this interval

Life of an

Atomic Operation

Time

operation
happens

atomically

Life of an

Atomic Operation

Time

operation
happens

atomically

Life of an

Atomic Operation

Time

operation
happens

atomically

Correct Behaviors

Time

put (3)

get () ← 3

Suppose the queue is initially empty

Correct Behaviors

Time

put (3)

get () ← None

Suppose the queue is initially empty

Correct Behaviors

Time

put (3)

get () ←

Suppose the queue is initially empty

None

Correct Behaviors

Time

put (3)

get () ←

Suppose the queue is initially empty

3

Queue test program

Testing:

comparing behaviors

The first command outputs the behavior of
the running test program against the
specification in file queue4.hfa

The second command runs the test program
against the implementation and checks if its
behavior matches that stored in queue4.hfa

Review
Concurrent programming is hard!

Non-Determinism

Non-Atomicity

Critical Sections simplify things

mutual exclusion

progress

Critical Sections use a lock

Threads need lock to enter the CS

Only one thread can get the section’s lock

Readers-Writers

Models access to an object (e.g., a
database), shared among several threads

some threads only read the object

others only write it

Safety
<latexit sha1_base64="+UIL56I5LZcqpJTYJObM3dFXtZ0=">AAACNnicjVDLSgMxFM3UV62vqks3wUGYbsqM+NooRTduhCr2AZ1SMultG5p5kGQsZehXufE73HXjQhG3foLptOADBQ+EHM45l5scL+JMKtseG5m5+YXFpexybmV1bX0jv7lVlWEsKFRoyENR94gEzgKoKKY41CMBxPc41Lz+xcSv3YGQLAxu1TCCpk+6AeswSpSWWvkryzUFdruA7QJ2B9DWzLKxywG75iC9nU8jDZ+l0RvW7SkiRDjA1iR5qtVCK286RTsF/puYaIZyK//otkMa+xAoyomUDceOVDMhQjHKYZRzYwkRoX3ShYamAfFBNpP02yO8p5U27oRCn0DhVP06kRBfyqHv6aRPVE/+9Cbib14jVp2TZsKCKFYQ0OmiTsyxCvGkQ9xmAqjiQ00IFUy/FdMeEYQq3XTufyVU94vOUfHw+sAsnc/qyKIdtIss5KBjVEKXqIwqiKJ7NEbP6MV4MJ6MV+NtGs0Ys5lt9A3G+wfPMqVg</latexit>

(#r � 0) ^ (0  #w  1) ^ ((#r > 0)) (#w = 0))

How to get more
concurrency?

Idea: allow multiple read-only operations to
execute concurrently

In many cases, reads are much more
frequent than writes

Reader/Writer lock

at most one writer, and, if no writer, any
number of readers

166

<latexit sha1_base64="+UIL56I5LZcqpJTYJObM3dFXtZ0=">AAACNnicjVDLSgMxFM3UV62vqks3wUGYbsqM+NooRTduhCr2AZ1SMultG5p5kGQsZehXufE73HXjQhG3foLptOADBQ+EHM45l5scL+JMKtseG5m5+YXFpexybmV1bX0jv7lVlWEsKFRoyENR94gEzgKoKKY41CMBxPc41Lz+xcSv3YGQLAxu1TCCpk+6AeswSpSWWvkryzUFdruA7QJ2B9DWzLKxywG75iC9nU8jDZ+l0RvW7SkiRDjA1iR5qtVCK286RTsF/puYaIZyK//otkMa+xAoyomUDceOVDMhQjHKYZRzYwkRoX3ShYamAfFBNpP02yO8p5U27oRCn0DhVP06kRBfyqHv6aRPVE/+9Cbib14jVp2TZsKCKFYQ0OmiTsyxCvGkQ9xmAqjiQ00IFUy/FdMeEYQq3XTufyVU94vOUfHw+sAsnc/qyKIdtIss5KBjVEKXqIwqiKJ7NEbP6MV4MJ6MV+NtGs0Ys5lt9A3G+wfPMqVg</latexit>

(#r � 0) ^ (0  #w  1) ^ ((#r > 0)) (#w = 0))

Reader/Writer Lock
Specification

R/W Locks: Test for
Mutual Exclusion

No
Writer

1 Writer and
No Readers

 In CS

 In CS

Multiple
Readers

Cheating R/W

Lock Implementation

But, at least,
no bad behavior!

It is
missing

behaviors
allowed by the
specification

Only 1
Reader gets
a lock at a

time!

Cheating R/W

Lock Implementation

But, at least,
no bad behavior!

It is
missing

behaviors
allowed by the
specification

Only 1
Reader gets
a lock at a

time!

Cheating R/W

Lock Implementation

But, at least,
no bad behavior!

It is
missing

behaviors
allowed by the
specification

Only 1
Reader gets
a lock at a

time!

Busy-Waiting Implementation

Process continuously
scheduled to try to
get the lock even if it

is not available

It has the same
behaviors as the
implementation!

Acquire the lock
Test the condition
Release the lock

Repeat
 Busy
waiting

<latexit sha1_base64="6EMvoVenj8k0bIND2fQRkmWVODg=">AAAB6XicdVDLTgJBEOzFF+IL9ehlIjHxtJmFVeBG9OIRjSAJbMjsMAsTZh+ZmTUhhD/w4kFjvPpH3vwbZwETNVpJJ5Wq7nR3+YngSmP8YeVWVtfWN/Kbha3tnd294v5BW8WppKxFYxHLjk8UEzxiLc21YJ1EMhL6gt3548vMv7tnUvE4utWThHkhGUY84JRoI930Zv1iCdt1jOt1jLCNK5WqU85Iza2cucix8RwlWKLZL773BjFNQxZpKohSXQcn2psSqTkVbFbopYolhI7JkHUNjUjIlDedXzpDJ0YZoCCWpiKN5ur3iSkJlZqEvukMiR6p314m/uV1Ux3UvCmPklSziC4WBalAOkbZ22jAJaNaTAwhVHJzK6IjIgnVJpyCCeHrU/Q/aZdt59x2r91S42IZRx6O4BhOwYEqNOAKmtACCgE8wBM8W2Pr0XqxXhetOWs5cwg/YL19AgKXjbM=</latexit>

}
The lock

protects nreaders
and nwriters,
not the RW

critical section!

Busy-Waiting Implementation

Process continuously
scheduled to try to
get the lock even if it

is not available

It has the same
behaviors as the
implementation!

 Busy
waiting

<latexit sha1_base64="6EMvoVenj8k0bIND2fQRkmWVODg=">AAAB6XicdVDLTgJBEOzFF+IL9ehlIjHxtJmFVeBG9OIRjSAJbMjsMAsTZh+ZmTUhhD/w4kFjvPpH3vwbZwETNVpJJ5Wq7nR3+YngSmP8YeVWVtfWN/Kbha3tnd294v5BW8WppKxFYxHLjk8UEzxiLc21YJ1EMhL6gt3548vMv7tnUvE4utWThHkhGUY84JRoI930Zv1iCdt1jOt1jLCNK5WqU85Iza2cucix8RwlWKLZL773BjFNQxZpKohSXQcn2psSqTkVbFbopYolhI7JkHUNjUjIlDedXzpDJ0YZoCCWpiKN5ur3iSkJlZqEvukMiR6p314m/uV1Ux3UvCmPklSziC4WBalAOkbZ22jAJaNaTAwhVHJzK6IjIgnVJpyCCeHrU/Q/aZdt59x2r91S42IZRx6O4BhOwYEqNOAKmtACCgE8wBM8W2Pr0XqxXhetOWs5cwg/YL19AgKXjbM=</latexit>

}

Wasteful!

Waiting
Conditional

Threads wait for each other to prevent
multiple threads in the CS

But there may be other reasons:

Wait until queue is not empty before
executing get()

Wait until there are no readers (or
writers) in a reader/writer block

…

WaitingConditional

Busy Waiting:

not a good way

Wait until queue is not empty:

done = False
while not done:

next = get(q)
done = next != None

Wastes CPU cycles
Creates unnecessary contention

Binary Semaphores

N U J V

Dijkstra 1962

Binary Semaphore
Boolean variable (much like a lock)

Three operations

binsema = BinSema(False or True)

initializes binsema

acquire (?binsema)

waits until !binsema is False, then
sets !binsema to True

release(?binsema)

sets !binsema to False

can only be called if !binsema = True

P & V
Dijkstra was Dutch

He said Probeer-te-verlagen instead of
acquire - and shortened it to P

He said Verhogen instead of release -
and shortened it to V

Still very popular nomenclature

To remember it:

Procure (acquire)

Vacate (release)

Binary Semaphore
Specification

Semaphores v. Locks

Locks Binary Semaphores

Initially “unlocked”
(False)

Can be initialized to False or
True

Usually acquired and
released by the same

thread

Can be acquired and released
by different threads

Mostly used to
implement critical

sections

Can be used to implement
critical sections as well as

waiting for special conditions

Waiting with
Semaphores

Encode condition as a
binary semaphore

Wait for condition to
come true

Signal condition has
become true

What
happens if
T0 runs
first?

What
happens if
T1 runs
first?

Semaphores can be

locks too!

Initialized to False

grab lock

release lock

What else can we do
with binary semaphores?

