
Atomic Section ≠

Critical Section

Atomic Section Critical Section

Only one thread can
execute

Multiple threads can execute
concurrently, just not within a

critical section

Rare programming
language paradigm

Ubiquitous: locks available in
many mainstream

programming languages

Good for specifying
interlock instruction

Good for implementing
concurrent data structures

Using Locks
Data structures maintain some invariant

Consider a linked list

There is a head, a tail, and a list of nodes such as
the head points to the first node, tail points to the
last one, and each node points to the next one,
except for the tail, which points to None. However, if
the list is empty, head and tail are both None

You can assume the invariant holds right
after acquiring the lock

You must make sure invariant holds again
right before releasing the lock

Building a

Concurrent Queue

: allocates a new queue

: adds to the tail of queue

: returns

None if is empty, or

 if was at the head of the queue

q = queue.new()
queue.put(q, v) v q

v = queue.get(q)
q

v v

Specifying a

Concurrent Queue

Sequential Concurrent

Example of

using a Queue

enqueue onto v q

dequeue and check

create a queue

Queue implementation, v1
.head
.tail
.lock

.value

.next
.value
.next

.value

.next None

dynamic memory allocation

create empty queue

allocate node
grab lock

release lock

The Hard
Stuff

Queue implementation, v1
.head
.tail
.lock

.value

.next
.value
.next

.value

.next None

empty queue

release lock

grab lock

free dynamically allocated memory

The Hard
Stuff

How important are
concurrent queues?

All important!

any resource that needs scheduling

CPU ready queue

disk, network, printer waiting queue

lock waiting queue

inter-process communication

Posix pipes: cat file | sort

actor-based concurrency

…

Performance
is

critical!

Queue implementation, v2:2 locks
.head
.tail

.hdlock

.value

.next
.value
.next

.value

.next None

.tllock

dummy

Separate locks for head and tail

put and get can proceed concurrently

Trick: put a dummy node at the head of the queue

last node that was dequeued (except at the
beginning)

head and tail never None

Queue implementation, v2:2 locks
.head
.tail

.hdlock

.value

.next
.value
.next

.value

.next None

.tllock

dummy

 Why an atomic_store here?

Queue implementation, v2:2 locks
.head
.tail

.hdlock

.value

.next
.value
.next

.value

.next None

.tllock

dummy

 …and here?

BUT: Data race on

when queue is empty
dummy → next

Faster!
No contention for

concurrent enqueue and
dequeue ops more

concurrency
⇒

Global vs Local Locks
The two-lock queue is an example of a data
structure with fine-grain locking

A global lock is easy, but limits concurrency

Fine-grain (local) locks can improve concurrency

think of having to walk a queue…

 but tend to be tricky to get right

Sorted lists with lock per node
.next

.value

.next None
-∞ .value

.next
∞

.next

Helper routine to find and lock
two consecutive nodes before

and after such that:
before value < v ≤ after value→ →

one lock per node

empty list: (-1,
None)

(1,
None) None

Sorted lists with lock per node
.next

.value

.next None
-∞ .value

.next
∞

.next

Hand-over-hand
locking

empty list: (-1,
None)

(1,
None) None

Sorted lists with lock per node
.next

.value

.next None
-∞ .value

.next
∞

.next

Multiple threads can
access the list
simultaneously, but
they can’t overtake
one another!

