Atomic Section #
Critical Section

Atomic Sectlon Critical Section

MuL’cipLe threads can execute
cowcuwew’cLH,J’ust not within a
critical section

OV\,LH one thread can
gxecute

Uubiguitous: locks avatlable tn
many marnstream
programming languages

RAYeE Programiming
language paradigm

Good for specifying Good for implementing

tnterlock Lnstruction concurrent data structuwres

Using Locks

® Data structures maintain some invariant

0 Consider a linked list

» There is a head, a tail, and a list of nodes such as
the head points to the first node, tail points to the
last one, and each node points to the next one,
except for the fail, which points fo None. However, if
the list is empty, head and tail are both None

@ You can assume the invariant holds right
after acquiring the lock

@ You must invariant holds again
right before releasing the lock

Building a
Concurrent Queue

® g = queue.new(): allocates a new queue
@ queue.put(g,v): adds v to the tail of queue ¢
@ v = queue.get(g): returns

D None if g is empty, or

D v if v was at the head of the queue

Specifying a
Concurrent Queue

def Queue() returns empty:
empty = []

def put(g, v):
lq += [v)]

def get(g) returns next:
if lg=—||:
nert = None
else:
next = (!¢)[0]
del (1)[0]

{ Se?aenffa/ }

def Queue() returns empty:
empty =]

def put(gq, v):
atomically !g += [v,]

def get(q) returns next:
atomically:
if lg==1]:
next = None
else:
next = (1¢)[0]
del (1¢)[0]

! Concerrent '

Example of
using a Queue

import queue [

{
def sender(q, v): engttette V onto (
queue.put(gq, v) —_— ‘J
def receiver(q): (

let v = queue.get(q):
assert v in { None, 1,2 } deguece and check

"
demoq = queue.Queue() Credle a Quette '

spawn sender(?demoq, 1) e
spawn sender(?demog, 2)
spawn receiver(?demoq)

spawn receiver(?demoq)

T —

(QQueue implementation, vl

from synch import Lock, acquire release

from alloc import malloc, free dynamric sesory allocation |

def Queue() returns empty:
empty = { .head: None, .tail: None, .lock: Lock() Credale emply gutette

T —

def put(g, v):
let node = malloc({ .value: v, .next: None }): a//ocale node l
acquire(?g—lock) "
if ¢—tail == None: gras lock J
g—tail = g—head = node
else: 7T he Hard
g—tail—next = node S
g—tail = node —

release(?g—lock) release lock l

(QQueue implementation, vl

def get(g) returns next: 4
acquire(?g—lock) __51 “ Oiu

let node = g—head:

if node == None: l erply ouette '
next = None

else:
next = node— value The vard
g—head = node—next
if g—head == None:
g—tail = Nor - — —

free (TLO dE) £ree a/ynam/ca//y alloc ated »1eMory
| —
release(?g—lock) el /icﬂ
—

SEuUrF

.

How important are
concurrent queues?

@ All important!

0 any resource that needs scheduling
» CPU ready queue
» disk, network, printer waiting queue

» lock waiting queue

D Inter-process communication

> Posix pipes: cat file | sort GikikEs

IS
0 actor-based concurrency critical!

a

Queue implementation, v2:2 locks

dummy

S
.head +———p

tail <

hdlock

tllock
Sl

@ Separate locks for head and tail

o put and get can proceed concurrently

@ Trick: put a dummy node at the head of the queue

o last node that was dequeued (except at the
beginning)

o head and tail never None

Queue implementation, v2:2 locks

dummy

: .head
.tail

.hdlock
.tlock

from synch import Lock, acquire, release, atomic_load, atomic_store

from alloc import malloc, free

def Queue() returns empty:
let dummy = malloc({ .value: (), .next: None }):
empty = { .head: dummy, .tail: dummy, .hdlock: Lock(), .tllock: Lock() }

def put(gq, v):
let node = malloc({ .value: v, .next: None }):
acquire(?g— tllock)
atomic_store(?g¢—tail—next, node) 4—/«)/75/ an aorvc_store here?
g—tail = node
release(?g— tllock)

Queue implementation, v2:2 locks

dummy

.head
.tail

.hdlock
.tllock

FéSZ‘ ert

acquire(?g—hdlock) No conterntion £or

let dummy = g— head K
let node = atomic_load(?dummy— next): Concurrent Ehipclecie and

if node == None: a/e?aeae ops = rore

def get(q) returns nezt:

.and here?

next = N';)ne cOncarrency
release(?q—hdlock) — .

else: * |
next = node—value BUT: Dala race on
g—head = node
release(?g—rhdlock)
free(dummy) when ?L(eé(e IS eM/OZ‘y
T —

a/ammy — nex?

Global vs Local Locks

@ The two-lock queue is an example of a data
structure with fine-grain locking

@ A global lock is easy, but limits concurrency
@ Fine-grain (local) locks can improve concurrency
o think of having to walk a queue...

@ but ftend to be tfricky to get right

Sorted lists with lock per node

from synch import Lock, acquire, release
from alloc import malloc, free

def node(v, n) returns node: # allocate and initialize a new list node . Joc ,é per no de ’

node = malloc({ .lock: Lock(), .value: v, .next: n })

T —

def _find(lst, v) returns pair: e //93 r roetine 2o £ind and loc ,é
var before = Ist

acquire(?before— lock) Zroo Consecwtive nodes before

var after = before—next

acquire(?after—lock) arnd afler such that:

while after—wvalue < (0, v):
release(?before—lock)
before = after —_—
after = before—next
acquire(?after— lock)

pair = (before, after)

before—value £ v < afler—rvalite

def SetObject() returns object: :

object = mnode((—1, None), node((1, None), None)) e/y/pz‘y /ISt
T — T —

Sorted lists with lock per node

from synch import Lock, acquire, release
from alloc import malloc, free

def node(v, n) returns node: # allocate and initialize a new list node
node = malloc({ .lock: Lock(), .value: v, .next: n })

def _find(lst, v) returns pair:

var before = Ist

acquire(?before— lock)

var after = before—next

acquire(?after—lock)

while after—wvalue < (0, v): %Q/?O/ —ove, "'h&ha/
release(?before—lock) ‘
before = after / Oc,é/ nﬁ
after = before—next
acquire(?after— lock)

pair = (before, after)

def SetObject() returns object:
object = mnode((—1, None), node((1, None), None)) e/yzpz‘y /ist:
T — ————

Sorted lists with lock per node

def insert(Ist, v):
let before, after = find(Ist, v):
if after—value '= (0, v):
before—next = mnode((0, v), after)
release(?after—lock)
release(?before—lock) i
Multiple 2hreads can
def remove(lst, v):
let before, after = find(Ist, v): acClCesSS Z‘/?e /157
if after—value == (0, v): ‘
before—next = after—next SIMLZ/Z(QI‘)&O&(S/}/, ALZZ(
free(after) s
release(?after—lock) Z‘/ﬁg}/ C.an Z‘ o\/erfa,ée
release(?before—lock)
one another!

def contains(lst, v) returns present:
let before, after = £ind(Ist, v): W—
present = after—value == (0, v)
release(?after—lock)
release(?before—lock)

