Pheeeeeeewwww...

but what if we have more than 2 threads?

Petersons Reconsidered

® Mutual Exclusion can be implemented with
atomic LOAD and STORE instructions

o multiple STOREs and LOADs

@ Petersons can be generalized to more than 2
processes (as long as the number of
processes is known) but it is a mess...

0 ...and even more STOREs and LOADs

Too inefficient in practice!

Petersons even more
Reconsidered!

@ It assumes LOAD and STORE insfructions are
atomic, but that is not guaranteed on a real
processor

D Suppose X is a 64-bit integer, and you have a
32-bit CPU

0O Then x = 0 requires 2 STORES (and reading x
two LOADs

» because it occupies 2 words!

DO Same holds if x is a 32-bit integer, but it is
not aligned on a word boundary

Concurrent Writing

not word aligned!

® Say X is a 32 bit word @ 0x12340002 ~—

@ Consider two threads, T1 and T2
O Tl: x = OXFFFFFFFF (legv=— 1)
o ey — O

@ After Tl and T2 are done, x may be any of

o 0, OxFFFFFFFF, OxFFFFOOOO, or OXOOOOFFFF

@ The outcome of concurrent write operations to
a variable is undefined

Concurrent R/W

not word aligned!

® Say x is a 32 bit word @ 0x123400027 initially O

@ Consider two threads, T1 and T2
O Tl: x = OXFFFFFFFF (legv=— 1)
O ey = ¢ (i.e., T2 reads Xx)
@ After Tl and T2 are done, y may be any of

o 0, OxFFFFFFFF, OxFFFFOOOO, or OXOOOOFFFF

@ The outcome of concurrent read and write
operations to a variable is undefined

Data Race

® When two threads access the same
variable...

@ ..and at least one is a STORE...

@ ..then the semantics of the outcome is
undefined

Harmony's “sequential”
statement

@ sequential turn, flags

® Ensures that LOADs and STOREs are atomic

o concurrent HVM operations appear to be executed
sequentially, in the order in which they appear on
each thread

o this is the definition of sequential consistency

@ Say X's current value is 3; Tl STOREs 4 into x; T2
LOADSs x
o with atomic LOAD/STORE, T2 reads 3 or 4

o with modern CPUs/compilers, what T2 reads is
undefined - e.g., Intel, ARM do not guarantee SC!

Sequential Consistency

@ Java has a similar notion to Harmony's
sequential

o volatile int x

@ Loading/Storing sequentially consistent
variables is more expensive than loading/
storing ordinary variables

D It restricts CPU or compiler optimizations

So, what do we do?

Interlock Instructions

@ Machine instructions that do multiple shared
memory accesses (read/write) atomically

@ TestAndSet s
o returns the old value of s (LOAD roO,s)
o sets s to True (STORE s, 1)

@ Entire operation is atomic

o other machine instructions cannot interleave

Harmony Interlude:

Pointers
@ If x is a shared variable, ?x is the address
of x
@ If p is a shared variable, and p = = 'z,

then we say that p is a pointer fo x

@ Finally, !p refers to the value of x

Test-and-Set in Harmony

@ For example:
def test_and set(s): |

atomically: | lockl = False

result = s lock2 = True

rl = test_and_set(?lockl)

ls = True
lakes Che address
eyl 2 = test_and_set(?lock2)

assert lockl and lock?2

assert (not rl) and r2

Recall: bad lock
~ implementation

lockTaken = False

def thread(self):
while choose({ False, True }):
Enter critical section
await not lockTaken‘- 7est..
7est and set lockTaken = True‘— and set

not

dopnell | # Critical section
cs: assert countLabel(cs) ==

Leave critical section
lockTaken = False

spawn thread(0)
spawn thread(1)

A good implementation
(“Spinlock™)

lockTaken = False Same idea
def test_and_set(s): as before’

atomically:
result = !s

!s = True buf nOW
def thread(self): W“-h Cln

while choose ({False, True}):

enter critical section Cl"'OmiC

while test_and_set(?lockTaken):

pass fest&set!

cs: countLabel(cs) == 1

Lock is repeatedly

exit critical section “fried", Checking on a

atomically lockTaken = False e . :
condition in a tight

spawn thread(0) IOOP (“spinning")
spawn thread(1)

Locks

@ Think of locks as “"baton passing”

o at most one thread can “hold” False

Specifying (a Lock)

i A specification

describes an

def Lock(): object, and the
result = False |woricaly whens:y behavior of the

lests atorncally x;

wohen x i5 rute methods that are
def acquire(lk): ooy invoked on it
atomically when not !lk:

ke —
llk = True 0O uses atomically

to specify the
behavior of
these methods
when executed
In isolation

def release(lk):
assert !/k
atomically !/k = False

SpeC/ﬂ calion

——

def Lock() returns result:
result = False

def acquire(lk):
atomically when not !lk:
llk = True

def release(lk):
atomically:
assert !lk

Ik = False

wWhat an abstraction

does

Ifyzp/ ementalion®

K ust one wav 2o do rald

T — —

Def Lock()
result = False

test_and_set(s):

atomically:
result = !s
Is = True

atomic_store(var, val):
atomically !var = val

acquire(1lk):
pass

release(1lk):
atomic_store(lk, Falseﬂ

| %oa) ZAre QASZ(racf/‘on

does ¢

Using a lock for a
critical section

import synch
const NTHREADS = 2
lock = synch.Lock()

def thread():
while choose({ False, True }):
synch.acquire(?lock)
10 cs: assert countLabel(cs) ==
11 synch.release(?lock)
12
13 for ¢ in {1..NTHREADS}:
14 spawn thread|()

T ——

Spinlocks and
Time Sharing

@ Spinlocks work well when threads on different
cores need to synchronize

@ But what if two threads are on the same core?

o when there is no preemption?

» all threads may get stuck while one is frying to
obtain the spinlock — BAD!!

0 wWhen there is preemption?

» still delays and a waste of CPU cycles while a
thread consumes a quantum trying to obtain a
spinlock

Beyond Spinlocks

@ We would like to be able to suspend a
thread that is trying to acquire a lock that
IS being held

o until the lock is ready

@ A context switch!

Support for context switching
in Harmony

@ Harmony allows contexts to be saved and
restored (i.e., enables a context switch)

O _re= stop p

» Stops the current thread and stores context in !
p (p must be a pointer). If go is later invoked on
that thread, then stop returns the value of r
specified by go

o go ('p) r

» adds a thread with the given context (i.e., the
one pointed by p) to the bag of threads. Threads
resumes from stop expression, returning r

Lock specification using
stop and go

import list |
I
def Lock(): : ac?a/rea/: boolean

result = { .acquired: False, .suspended: [] } | suspended: guette of’ contexts

def acquire(lk): r
atomically:
if lk— acquired: add stopped context at Zhe end

stop ?lk— suspended[len lk— suspended] of ouese associated with lock
assert lk—acquired 5

else: ’

lk— acquired = True |
!

1
2
3
4
5
6
7
8
9

[y
o

(=
(=

[y
(™)

(=
w

def release(lk): |
atomically: :
assert lk— acquired |

[y
-

-
o

-
(=]

if lk— suspended == []:
lk— acquired = False
else: restart thread a Aead of gUetle
go (list.head(lk— suspended)) () ‘
lk— suspended = list.tail(lk— suspended) and remove iZ £rom gHecde
T —

(=Y
-

[y
w

[y
o]

&
(=]

b
r—

‘

Lock specification using
stop and go

import list

def Lock(): S/‘M/‘/ ar Co Z./‘I?LZX
result = { .acquired: False, .suspended: [] } . "
Fedex
def acquire(lk):

atomically: a)zZ‘/? no contention
if lk— acquired:

stop ?lk— suspended[len lk— suspended) (Ao Pe{’ 2/, /y Zhe cormrion
assert lk— acquired

else: X (a/
lk— acquired = True Cd53> QC'/? Ll)e > arn

1
2
3
4
5
6
7
8
9

[y
o

(=
(=

[y
(™)

(=
w

def release(lk): re/eaje(> are Ch&@ﬂ

atomically: AJIZ‘/[Confenz(/‘on y A

assert lk— acquired
if lk— suspended == []:
lk— acquired = False
else:
go (list.head(lk— suspended)) ()
lk— suspended = list.tail(lk— suspended)
———— —————

[
LS

-
o

-
=]

(=Y
-

conlext Seonlch 1S

[y
w

[y
o]

re?w'rea/

&
(=]

b
r—

Choosing Modules in
Harmony

@ "synch” is the (default) module that has the
specification of a lock

@ “synchS” is the module that has the stop/go
version of the lock

@ You can select which one you want”
0 harmony -m synch=synchS x.hny
@ “synch” tends to be faster than “synchS”

o smaller state graph

