
Pheeeeeeewwww…
but what if we have more than 2 threads?

Peterson’s Reconsidered

Mutual Exclusion can be implemented with
atomic LOAD and STORE instructions

multiple STOREs and LOADs

Peterson’s can be generalized to more than 2
processes (as long as the number of
processes is known) but it is a mess…

…and even more STOREs and LOADs

Too inefficient in practice!

Peterson’s even more
Reconsidered!

It assumes LOAD and STORE instructions are
atomic, but that is not guaranteed on a real
processor

Suppose is a 64-bit integer, and you have a
32-bit CPU

Then requires 2 STORES (and reading
two LOADs

because it occupies 2 words!

Same holds if is a 32-bit integer, but it is
not aligned on a word boundary

x

x = 0 x

x

Concurrent Writing
Say is a 32 bit word @ 0x12340002

Consider two threads, T1 and T2

T1: 0xFFFFFFFF (i.e.,)

T2:

After T1 and T2 are done, may be any of

0, 0xFFFFFFFF, 0xFFFF0000, or 0X0000FFFF

The outcome of concurrent write operations to
a variable is undefined

x

x = x = − 1
x = 0

x

not word aligned!

Concurrent R/W
Say is a 32 bit word @ 0x12340002, initially 0

Consider two threads, T1 and T2

T1: 0xFFFFFFFF (i.e.,)

T2: (i.e., T2 reads)

After T1 and T2 are done, may be any of

0, 0xFFFFFFFF, 0xFFFF0000, or 0X0000FFFF

The outcome of concurrent read and write
operations to a variable is undefined

x

x = x = − 1
y = x x

y

not word aligned!

Data Race

When two threads access the same
variable…

…and at least one is a STORE…

…then the semantics of the outcome is
undefined

Harmony’s “sequential”
statement

sequential

Ensures that LOADs and STOREs are atomic

concurrent HVM operations appear to be executed
sequentially, in the order in which they appear on
each thread

this is the definition of sequential consistency

Say s current value is 3; T1 STOREs 4 into ; T2
LOADs

with atomic LOAD/STORE, T2 reads 3 or 4

with modern CPUs/compilers, what T2 reads is
undefined - e.g., Intel, ARM do not guarantee SC!

x′ x
x

<latexit sha1_base64="l8BzNy/WKkKjTuFh+7fCIAiTug4=">AAAB8HicdVDLSgMxFL1TX7W+prp0EyyCCxlm2lJdCBbcuKxgbaEtJZNm2tBMZkgyShn6H25E3Cj4Jf6Cf+EnmE51UR8HAodzTrj3XD/mTGnXfbdyS8srq2v59cLG5tb2jl3cvVFRIgltkohHsu1jRTkTtKmZ5rQdS4pDn9OWP76Y+a1bKhWLxLWexLQX4qFgASNYG6lvF9MuDZFOpDhGAcdDNe3bJc9xM6D/Sen8AzI0+vZbdxCRJKRCE46V6nhurHsplpoRTqeFbqJojMkYD2maLTxFh0YaoCCS5gmNMnUhh0OlJqFvkiHWI/XTm4l/eZ1EB6e9lIk40VSQ+aAg4UhHaNYeDZikRPOJIZhIZjZEZIQlJtrcqGCqu06lVvUqLvpNvqvflB2v5lSvyqX62fwGkId9OIAj8OAE6nAJDWgCgTt4gGd4saR1bz1aT/Nozvr6swcLsF4/AUD0kMs=</latexit>

turn, flags

Sequential Consistency

Java has a similar notion to Harmony’s
sequential

volatile int x

Loading/Storing sequentially consistent
variables is more expensive than loading/
storing ordinary variables

it restricts CPU or compiler optimizations

So, what do we do?

Interlock Instructions

Machine instructions that do multiple shared
memory accesses (read/write) atomically

TestAndSet s

returns the old value of s (LOAD r0,s)

sets s to True (STORE s, 1)

Entire operation is atomic

other machine instructions cannot interleave

Harmony Interlude:
Pointers

If is a shared variable, is the address
of

If is a shared variable, and ,
then we say that is a pointer to

Finally, refers to the value of

x ?x
x

p p = = ?x
p x

!p x

Test-and-Set in Harmony

For example:

lock1 = False
lock2 = True
r1 = test_and_set(?lock1)
r2 = test_and_set(?lock2)

assert lock1 and lock2
assert (not r1) and r2

takes the address
of s as input

Recall: bad lock
implementation

 Test..
 ..and setTest and set

not
atomic!!

A good implementation

(“Spinlock”)

Same idea
as before,
but now
with an
atomic

test&set!
Lock is repeatedly

“tried”, checking on a
condition in a tight
loop (“spinning”)

Locks
Think of locks as “baton passing”

at most one thread can “hold” False

Specifying (a Lock)

uses atomically
to specify the
behavior of
these methods
when executed
in isolation

A specification
describes an

object, and the
behavior of the

methods that are
invoked on it

atomically when x: y
tests atomically x;
when x is true,
it atomically executes y

Specification Implementation*
*just one way to do it!

What an abstraction
does How the abstraction

does it

Using a lock for a
critical section

Spinlocks and

Time Sharing

Spinlocks work well when threads on different
cores need to synchronize

But what if two threads are on the same core?

when there is no preemption?

all threads may get stuck while one is trying to
obtain the spinlock — BAD!!!

when there is preemption?

still delays and a waste of CPU cycles while a
thread consumes a quantum trying to obtain a
spinlock

Beyond Spinlocks

We would like to be able to suspend a
thread that is trying to acquire a lock that
is being held

until the lock is ready

A context switch!

Support for context switching

in Harmony

Harmony allows contexts to be saved and
restored (i.e., enables a context switch)

r = stop p

stops the current thread and stores context in !
p (p must be a pointer). If go is later invoked on
that thread, then stop returns the value of r
specified by go

go (!p) r

adds a thread with the given context (i.e., the
one pointed by p) to the bag of threads. Threads
resumes from stop expression, returning r

Lock specification using
stop and go

. acquired: boolean

. suspended: queue of contexts

add stopped context at the end
of queue associated with lock

restart thread at head of queue
and remove it from queue

Similar to Linux
 “futex”:

with no contention
(hopefully the common

case) acquire() and
release() are cheap.
With contention, a
context switch is

required

Lock specification using
stop and go

Choosing Modules in
Harmony

“synch” is the (default) module that has the
specification of a lock

“synchS” is the module that has the stop/go
version of the lock

You can select which one you want”

harmony -m synch=synchS x.hny

“synch” tends to be faster than “synchS”

smaller state graph

