
Non-Determinism

Non-Determinism

Non-Determinism
Two threads updating shared variable amount	

T1 wants to decrement amount by $10K

T2 wants to decrement amount by 50%

. . .

amount := amount - 10,000;

. . .

. . .

amount := amount * 0.5;

. . .

amount

T1 T2

What happens when T1 and T2 execute concurrently?

100,000Memory

Might execute like this:

. . .

r1 := load from amount

r1 := r1 - 10,000

store r1 to amount

. . .

. . .
r2 := load from amount

r2 := 0.5 * r2

store r2 to amount

. . .

T1

T2

Or viceversa: T1 and then T2

Non-Determinism

amount 40,000Memory

amount 45,000

But might also
execute like this:

. . .

r1 := load from amount

r1 := r1 - 10,000

store r1 to amount

. . .

. . .
r2 := load from amount

. . .

r2 := 0.5 * r2

store r2 to amount

. . .

T1

T2

One update is lost! Wrong – and very hard to debug

Non-Atomicity

amount 50,000Memory

Race Conditions

Behavior of race condition depends on how
threads are scheduled!

a concurrent program can generate
MANY “schedules” or “interleavings”

schedule: a total order of machine instructions

bug if any of them generates an
undesirable behavior

Timing dependent behaviors involving shared state

All possible interleavings should be safe!

Race Conditions:
Hard to Debug

Only some interleavings may produce a bug

But bad interleavings may happen very rarely

program may run 100s of times without generating an
unsafe interleaving

Small changes to the program may hide bugs

“The Case of the Print Statement”

Compiler and processor hardware can reorder
instructions

36

Dutch Wisdom

Students develop their
code in Python or C,
and test it by running
it many times….

Testing can only
prove the presence
of bugs… not
their absence!

Dutch Wisdom

True!

But there is testing
and then testing…

They submit their code,
confident that it is

correct…

Dutch Wisdom

and I test the code with
my secret and evil

methods…*

*uses homebrew library that randomly
samples from possible interleavings

(“fuzzing”)

…and find that most
submissions are broken!

Dutch Wisdom

Studies show that heavily
used code, implemented,
reviewed and tested by
expert programmers has lots
of concurrency bugs

Even professors who teach
concurrency or write books
or papers about concurrency
get it wrong sometimes!

I am unhappy,
and the students

are unhappy!

Why is that?

Dutch Wisdom

Hand-written proofs are just as likely to have
bugs as programs… or even more likely, as you

can’t test hand-written proofs!

There are no mainstream tools to check
concurrent algorithms… those that exist have a

steep learning curve

Dutch Wisdom

Spin

PlusCal

TLA+

Examples of

existing tools

Enter Harmony

A new concurrent programming language

heavily based on Python syntax to reduce
learning curve for many

A new underlying virtual machine, quite
different from any other

it tries all possible executions of a
program, until it finds a problem (if any)

(this is called “model checking”)

Once again, our example
def T1():
 amount = 10000
 done1 = True

def T2():
 amount /= 2
 done2 = True

def main():
 await done1 and done2
 assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

−

Once again, our example
def T1():
 amount = 10000
 done1 = True

def T2():
 amount /= 2
 done2 = True

def main():
 await done1 and done2
 assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

−

Once again, our example
def T1():
 amount = 10000
 done1 = True

def T2():
 amount /= 2
 done2 = True

def main():
 await done1 and done2
 assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

−

Equivalent to:

while not (done1 and done 2):
 pass

Once again, our example
def T1():
 amount = 10000
 done1 = True

def T2():
 amount /= 2
 done2 = True

def main():
 await done1 and done2
 assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

−

Assertion: useful to
check properties

Once again, our example
def T1():
 amount = 10000
 done1 = True

def T2():
 amount /= 2
 done2 = True

def main():
 await done1 and done2
 assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

−

Output amount if
assertion fails

An important note on
assertions

An assertion is not part of your algorithm

Semantically an assertion is a no-op

it is never expected to fail because it is
supposed to state a fact

That said…
Assertions are super-useful

@label: assert P is a type of invariant:

Use them liberally

in C, Java, …, they are automatically removed in
production code — or automatically optimized out if
you have a really good compiler

They are great for testing

They are executable documentation

comments tend to get outdated over time

pc = label ⇒ P

That said…
Comment them out before submitting a
programming assignment

you don’t want your assertions to fail while we
are testing your code…

Back to our example
def T1():
 amount = 10000
 done1 = True

def T2():
 amount /= 2
 done2 = True

def main():
 await done1 and done2
 assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

−

Initialize shared
variables

Back to our example
def T1():
 amount = 10000
 done1 = True

def T2():
 amount /= 2
 done2 = True

def main():
 await done1 and done2
 assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

−

Spawn three
processes
(threads)

Back to our example
def T1():
 amount = 10000
 done1 = True

def T2():
 amount /= 2
 done2 = True

def main():
 await done1 and done2
 assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

−

Back to our example
def T1():
 amount = 10000
 done1 = True

def T2():
 amount /= 2
 done2 = True

def main():
 await done1 and done2
 assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

−

Simplified model (ignoring main)
T1a: LOAD amount

T1b: SUB 10000

T1c: STORE amount

T2a: LOAD amount

T2b: DIV 2

T2c: STORE amount

T1 loaded
100000

T2 loaded
100000

T2 loaded 100000

T1 loaded 100000

T1 got
90000

T1 got
50000

T1 stored
90000

init

amount =
100000

init

T1a

T2a

T1b

T1a

T2a

T1c

T2b

T2a

T1b

T2b

T2a

T2c

T1a

Harmony Output
def T1():
 amount = 10000
 done1 = True

def T2():
 amount /= 2
 done2 = True

def main():
 await done1 and done2
 assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

−

Harmony Output
#states in the
state graph

Harmony Output

Something went wrong in
(at least) one path in the graph

(assertion failure)

Harmony Output

Shortest path to
assertion failure

Harmony’s VM State

Three parts:

code (which never changes)

values of shared variables

states of each of the running threads

a.k.a. “contexts”

State represents one vertex in the graph model

Context

(State of a Process)
Method name and parameters

PC (program counter)

stack

local variables

parameters (a.k.a. arguments)

result

there is no return statement

local variables

declared in var, let, and for statements

Harmony != Python

Harmony Python
tries all possible executions executes just one
(…) == […] == … 1 != [1] != (1)
1, == [1,] == (1,) != (1) == [1] == 1 [1,] == [1] != (1) == 1 != (1,)
f(1) == f 1 == f[1] f 1 and f[1] are illegal (if f is method)

{ } is empty set { } is empty dictionary
few operator precedence rules ---
use parentheses often

many operator precedence rules

variables global unless declared
otherwise

depends... Sometimes must be
explicitly declared global

no return, break, continue various flow control escapes
no classes object-oriented
… …

I/O in Harmony
Input

choose expression

choose

allows Harmony to know all possible inputs

const expression

const

can be overridden with “ ” to Harmony

Output

print

assert

x = ({1,2,3})

x = 3
−c x = 4

x + y
x + y < 10, (x, y)

I/O in Harmony
Input

choose expression

choose

allows Harmony to know all possible inputs

const expression

const

can be overridden with “ ” to Harmony

Output

print

assert

x = ({1,2,3})

x = 3
−c x = 4

x + y
x + y < 10, (x, y)

No open(), read(), or input()
statements

Non-determinism in
Harmony

Three sources

choose expressions

thread interleavings

interrupts

Limitation: Models must
be finite!

But models are allowed to have cycles

Executions are allowed to be unbounded

Harmony checks for the possibility of termination

T1 loaded
100000

T2 loaded
100000

T2 loaded 100000

T1 loaded 100000

T1 got
90000

T1 got
50000

T1 stored
90000

init

amount =
100000

init

T1a

T2a

T1b

T1a

T2a

T1c

T2b

T2a

T1b

T2b

T2a

T2a

T1a

Back to our problem…

Two threads updating shared variable amount	
T1 wants to decrement amount by $10K

T2 wants to decrement amount by 50%

. . .

amount := amount - 10,000;

. . .

. . .

amount := amount * 0.5;

. . .

amount

T1 T2

How to “serialize” these executions?

100,000Memory

Critical Section

Goals

Mutual exclusion: at most 1 thread in CS at any time

Progress: all threads wanting to enter CS eventually do

Fairness: equal chances to get into CS (uncommon in
practice)

. . .

CSEnter()

amount := amount - 10,000;

CSExit()

. . .

. . .

CSEnter()

amount := amount * 0.5;

CSExit()

. . .

T1 T2

Shared memory access: must be serialized

Critical Section

Goals

Mutual exclusion: at most 1 thread in CS at any time

Progress: if any threads want to enter the CS, at least
one does

. . .

CSEnter()

amount := amount - 10,000;

CSExit()

. . .

. . .

CSEnter()

amount := amount * 0.5;

CSExit()

. . .

T1 T2

Shared memory access: must be serialized

What makes the Critical
Section problem hard?

Mutual exclusion?

Progress?

It is the combination!

both properties, on their own, are trivial to
achieve

there is much more to this…

Prelim Interlude

How many times will the
value of result be printed?

32
result = 0

Fork!

i = 0

33

32
result = 0

result = 0
pid = 0

pid = 33

result++

First value(s)? Last value(s)?

How many times will the
value of result be printed?

32
result = 0

Fork!

i = 0

33

32

pid = 0

pid = 33
Print?

result++

First value(s)? Last value(s)?

result = 1

result = 1

1

i = 1

Fork!

33

32

pid = 35

pid = 34
result = 1

result = 134

35

pid = 0
result = 1

pid = 0
result = 1result++

How many times will the
value of result be printed?

32
result = 0

Fork!

i = 0

33

32

pid = 0

pid = 33
Print?

result++

First value(s)? Last value(s)?

result = 1

result = 1

1

i = 1

Fork!

33

32

pid = 35

pid = 34

34

35

pid = 0

pid = 0
result++

result = 2

result = 2

result = 2

result = 2

Print? 2

How many times will the
value of result be printed?

32
result = 0

Fork!

i = 0

33

32

pid = 0

pid = 33
Print?

result++

First value(s)? Last value(s)?

result = 1

result = 1

1

i = 1

Fork!

33

32

pid = 35

pid = 34

34

35

pid = 0

pid = 0
result++

result = 2

result = 2

result = 2

result = 2

Print? 2

