Non-Determinism

shared = True shared = True

def f(): assert shared ' def f(): assert shared
def g(): shared = False def g(): shared = False

f() : spawn f()
g() - spawn g()

(a) [code/progl.hny] Sequential (b) [code/prog2.hny| Concurrent

Figure 3.1: A sequential and a concurrent program.

Non-Determinism

shared = True shared = True

def f(): assert shared ' def f(): assert shared
def g(): shared = False def g(): shared = False

£() ‘ apasn 1()
g() spawn g()

(a) [code/progl.hny| Sequential (b) [code/prog2.hny] Concurrent

Figure 3.1: A sequential and a concurrent program.

*kSummary: something went wrong in an executionxx
[Nemo:~/Documents/harmony] lorenzo% harmony code/progl.hny

* Phase 1: compile Harmony program to bytecode Here is a summary of an execution that exhibits the issue:
* Phase 2: run the model checker (nworkers = 8)

* 2 states (time 0.00s, mem=0.000GB) * Schedule thread TO: __init__()
* Phase 3: analysis * Line 1: Initialize shared to True

* 2 components (0.00 seconds) * *xkThread terminatedsx

* Check for data races * Schedule thread T2: g()

% Line 4: Set shared to False (was True)
* *x*Thread terminated*x

* Schedule thread T1: f()
* Line 3: Harmony assertion failed

* *xkNo issues foundx
* Phase 4: write results to code/progl.hco
* Phase 5: loading code/progl.hco

Non-Determinism

Two threads updating shared variable amount
o T wants to decrement amount by $10K

o T2 wants to decrement amount by 50%
T 12

amount := amount - 10,000; amount := amount * 0.5;

What happens when T; and T, execute concurrently?

Non-Determinism

Might execute like this:

T2

T, r2 := load from amount
r2 :=0.5 *r2
store r2 to amount

rl := load from amount
rl :=rl - 10,000
store rl to amount

Or viceversa: Tiand then T, § amount

Non-Atomicity

T2

But might also
T execute like this: r2 := load from amount

rl := load from amount
rl :=rl - 10,000
store rl to amount

r2 :=0.5 *r2
store r2 to amount

One update is lost! = Wrong - and very hard to debug

Race Conditions

Timing dependent behaviors involving shared state

@ Behavior of race condition depends on how
threads are scheduled!

DO a concurrent program can generate
MANY “schedules” or “interleavings”

» Schedule: a total order of machine instructions

o bug if any of them generates an
undesirable behavior

Race Conditions:
Hard to Debug

@ Only some interleavings may produce a bug

@ But bad interleavings may happen very rarely

o program may run 100s of times without generating an
unsafe interleaving

@ Small changes to the program may hide bugs
o “"The Case of the Print Statement”

@ Compiler and processor hardware can reorder
Instructions

36

Dutch Wisdom

Stuolents develop their
code tn Pythown or C,

and test it b Y running
Lt many times....

-Tes)'ing can on\:j
)Dr‘Ove H’\e)oresence

0{7)Duﬁs... no)’
H’\eir a)osence!

Dutch Wisdom

Truwe!

But there is testing
and then testing...

They subwmiit thelr code,
confident that it is
corvrect...

Dutch Wisdom

~_ and | test the code with
my secret and evil
e
methods...
...and find that most
submissions are broken!

*uses howmebrew Library that randomly
samples from possible interleavings

(“fuzzing”)

Dutch Wisdom

Why is that?

@ Studies show that heavily
used code, implemented,
reviewed and tested by
expert programmers has lots
of concurrency bugs

[am uwhappg,
and the students
are uwhappgl

@ Even professors who teach
concurrency or write books
or papers about concurrency
get it wrong sometimes!

Dutch Wisdom

Hawd-written proofs are just as likely to have \
bugs as programs... or even more Likely, as you

can't test hand-written proofs!

There are no mainstream tools to check
concurrent algorithms... those that exist have a /

steep Learning curve

Dutch Wisdom

pool turn, flagl2); /] the shared variables, pooleans Exam
: o critical section P es OF

pyte ncrits // nr of procs in

active (2] proctype user() [P® processes o A
assert(_pid =0 || _pid == 1); QX|S'I-'ng -I-Ools

ain:
flag(_pid] = 1%
turn = _pid;
(flagll - _pid] == @ || turn == 1 - _pid);

—

ag

ncrit++; [
assert(ncrit == 1) "“190rif:hm\‘&Lﬁig‘c‘)&il’?n
‘ Peter B

ncrit——;: | Var:
| ariap son
| les flag {

flag[_pidl = 0; f * &
goto again ‘

Vi
ARIABLES flag, turn, pc

(flag, turn, pc)

A flag = [i € {0
7 y 1} —
Al } FALSE]

A pe = [self € {0,1} — “a0"]

A pe[self] = “a3a"
A IF flag| Not(self))

TH =

! EN pc’ = [pc EXCEPT ![self] = “a3b"
.LSE pc’ = [pc EXCEPT ![self] = “cs”]

A UNCHANGED (flag, turn) B

* remaini i
\ # remaining actions omitted

A
;;roc(self) = a0(self) V...V ad(self)
s) e
€x d self € {0,1} : proc(self)
Init A D[J’VCI!] vars

A

Spec

Enter Harmony

@ A new concurrent programming language

o heavily based on Python syntax fo reduce

ﬁ learning curve for many

@ A new underlying virtual machine, quite
different from any other

S i o it tries all possible executions of a
b
A

program, until it finds a problem (if any)

(this is called "model checking”)

- Once again, our example

def T1():
amount —= 10000
donel = True

def T2():
amount /=2
done2 = True

again, our example

def T1():
amount —= 10000
donel = True

def T2():
amount /=2
done2 = True

def main():
await donel and done2
assert (amount == 40000) or (amount == 45000), amount

donel = done2 = False
amount = 100000
spawn T1()

spawn T2()

spawn main()

r——

- Once again,

def T1():
amount —= 10000
donel = True

def T2(): Equivalent to:
amount /= 2

done2 = True while not (donel and done 2):

pass

def main():
await donel and done2
assert (amount == 40000) or (amount == 45000), amount

donel = done2 = False
amount = 100000
spawn T1()

spawn T2()

spawn main()

P—f

again, our

def T1():
amount —= 10000
donel = True

def T2():

amount /= 2
done2 = True Assertion: useful to

check properties

def main():
await donel and done2
assert (amount == 40000) or (amount == 45000), amount

donel = done2 = False
amount = 100000
spawn T1()

spawn T2()

spawn main()

r—f

again, our

def T1():
amount —= 10000
donel = True

def T2():

amount /= 2
done2 = True Output amount if

assertion fails

def main():
await donel and done2
assert (amount == 40000) or (amount == 45000), amount

donel = done2 = False
amount = 100000
spawn T1()

spawn T2()

spawn main()

r—f

An important note on
assertions

@ An assertion is not part of your algorithm

@ Semantically an assertion is a no-op

o it is never expected to fail because it is
supposed fo state a fact

That said...

@ Assertions are super-useful

o} @label: assert Pjis a type of invariant:

2. e = label => P
@ Use them liberally

o in C, Java, ..., they are automatically removed in
production code — or automatically optimized out if
you have a really good compiler

@ They are great for testing

@ They are executable documentation

o comments tend to get outdated over time

That said...

@ Comment them out before submitting a
programming assignment

o you dont want your assertions to fail while we
are testing your code... @

Back to our

def T1():
amount —= 10000
donel = True

def T2():
amount /= 2
done2 = True

def main():
await donel and done2
assert (amount == 40000) or (amount == 45000), amount

donel = done2 = False
amount = 100000
spawn T1()

spawn T2()

spawn main()

Initialize shared
variables

r—i‘

Back fo our example

def T1():
amount —= 10000
donel = True

def T2():
amount /= 2
done2 = True

def main():
await donel and done2
assert (amount == 40000) or (amount == 45000), amount

donel = done2 = False
amount = 100000 Spawn three

spawn T1() processes

spawn T2() (threads)
spawn main()

e ——

def T1():
amount —= 10000
donel = True

. Nemo:~/Documents
def’F2() Phase 1: compile Harmony program to bytecode

amount /=2 Phase 2: run the model checker (nworkers = 8)
done2 = True * 103 states (time 0.00s, mem=0.000GB)
Phase 3: analysis

* **kSafety Violation¥x*
Phase 4: write results to example.hco
Phase 5: loading example.hco

def main():

await donel and done2
assert (amount == 40000) or (amount == 45000), amount

**kSummary: something went wrong in an execution*
donel = done2 = False

amount = 100000
* Schedule thread TO: __init__()
Spavvn'rl() * Line 13: Initialize done2 to False
Spavvn'T2() * Line 13: Initialize donel to False
: * Line 14: Initialize amount to 100000
Spawn mam() * **Thread terminatedxx
* Schedule thread T2: T2()
* Preempted in T2()
about to store 50000 into amount in line 6
* Schedule thread T1: Ti()
* Line 2: Set amount to 90000 (was 100000)
* Line 3: Set donel to True (was False)
* **Thread terminatedxx
* Schedule thread T2: T2()
* Line 6: Set amount to 50000 (was 90000)
* Line 7: Set done2 to True (was False)
* **Thread terminatedx*
* Schedule thread T3: main()
* Line 11: Harmony assertion failed: 50000

Here is a summary of an execution that exhibits the issue:

def T1():
amount —= 10000
donel = True

def T2():
amount /= 2
done2 = True

def main():
await donel and done2

assert (amount == 40000) or (amount == 45000), amount

donel = done2 = False
amount = 100000
spawn T1()

spawn T2()

spawn main()

[Nemo:~/Documents/harmony/mycode] lorenzo% harmony example.hny

* Phase 1: compile Harmony program to bytecode
* Phase 2: run the model checker (nworkers = 8)
* 103 states (time ©.0@s, mem=0.000GB)
* Phase 3: analysis

* »kSafety Violationskk
* Phase 4: write results to example.hco
* Phase 5: loading example.hco

*kSummary: something went wrong in an executionxx

Here is a summary of an execution that exhibits the issue:

* Schedule thread TO: __init__()
* Line 13: Initialize done2 to False
* Line 13: Initialize donel to False
* Line 14: Initialize amount to 100000
* *kThread terminated*
* Schedule thread T1: Ti()
* Preempted in T1()
about to store 90000 into amount in line 2
* Schedule thread T2: T2()
* Line 6: Set amount to 50000 (was 100000)
* Line 7: Set done2 to True (was False)
* *kThread terminatedx
* Schedule thread T1: Ti()
* Line 2: Set amount to 90000 (was 50000)
% Line 3: Set donel to True (was False)
* skThread terminatedsix
* Schedule thread T3: main()
* Line 11: Harmony assertion failed: 90000

Simplified model (ignoring main)

Tla: LOAD amount T2a: LOAD amount
Tib: SUB 10000 T2b: DIV 2
Tlc: STORE amount T2c: STORE amount

T1c 90000 \

' init_ ied
Sl T1 got

Tib 90000 \

T2a

init
T1 loaded
y 100000 ik
amount = T1 loaded 100000
100000 T2 loaded 100000
T2b

T2 loaded
100000

T2a

Tla

T2b T1 got
50000

T2¢

def T1():
amount —= 10000
donel = True

def T2():
amount /= 2
done2 = True

def main():
await donel and done2

assert (amount == 40000) or (amount == 45000), amount

donel = done2 = False
amount = 100000
spawn T1()

spawn T2()

spawn main()

[Nemo:~/Documents/harmony/mycode] lorenzo% harmony example.hny

* Phase 1: compile Harmony program to bytecode
* Phase 2: run the model checker (nworkers = 8)
* 103 states (time ©.0@s, mem=0.000GB)
* Phase 3: analysis

* »kSafety Violationskk
* Phase 4: write results to example.hco
* Phase 5: loading example.hco

*kSummary: something went wrong in an executionxx

Here is a summary of an execution that exhibits the issue:

* Schedule thread TO: __init__()
* Line 13: Initialize done2 to False
* Line 13: Initialize donel to False
* Line 14: Initialize amount to 100000
* *kThread terminated*
* Schedule thread T1: Ti()
* Preempted in T1()
about to store 90000 into amount in line 2
* Schedule thread T2: T2()
* Line 6: Set amount to 50000 (was 100000)
* Line 7: Set done2 to True (was False)
* *kThread terminatedx
* Schedule thread T1: Ti()
* Line 2: Set amount to 90000 (was 50000)
% Line 3: Set donel to True (was False)
* *kThread terminatedsix
* Schedule thread T3: main()
* Line 11: Harmony assertion failed: 90000

armony Output

#states in the
state graph

Nemo : ~/Docum orenzo% harmony example.hny
* Phase 1: coy goram to bytecode
* Phase 2: the model checker (nworkers = 8)
* 103 states (time 0.00s, mem=0.0800GB)
* Phase 3: analysis
* **Safety Violationxk
* Phase 4: write results to example.hco
* Phase 5: loading example.hco

*kSummary: something went wrong in an executionxx
Here is a summary of an execution that exhibits the issue:

* Schedule thread TO: __init__()
* Line 13: Initialize done2 to False
* Line 13: Initialize donel to False
* Line 14: Initialize amount to 100000
* *kThread terminatedsik
* Schedule thread T1: Ti()
* Preempted in T1()
about to store 90000 into amount in line 2
* Schedule thread T2: T2()
* Line 6: Set amount to 50000 (was 100000)
* Line 7: Set done2 to True (was False)
* *kThread terminatedk
* Schedule thread T1: Ti()
* Line 2: Set amount to 90000 (was 50000)
* Line 3: Set donel to True (was False)
* skThread terminatedsix
* Schedule thread T3: main()
* Line 11: Harmony assertion failed: 90000

Harmony Output

[Nemo:~/Documents/harmony/mycode] lorenzo% harmony example.hny
* Phase 1: compile Harmony program to bytecode
* Phase 2: run the model checker (nworkers = 8)
* 103 states (time 0.00s, meg
FURTARDIS: (aNe ys s Something went wrong in

* **Safety Violationxk

e R T N R, (atleast) one path in the graph
* Phase 5: loading example.hco (assertion failure)

&

*kSummary: something went wrong in an executionxx
Here is a summary of an execution that exhibits the issue:

* Schedule thread TO: __init__()
* Line 13: Initialize done2 to False
* Line 13: Initialize donel to False
* Line 14: Initialize amount to 100000
* *kThread terminatedsik
* Schedule thread T1: Ti()
* Preempted in T1()
about to store 90000 into amount in line 2
* Schedule thread T2: T2()
* Line 6: Set amount to 50000 (was 100000)
* Line 7: Set done2 to True (was False)
* *kThread terminatedk
* Schedule thread T1: Ti()
* Line 2: Set amount to 90000 (was 50000)
% Line 3: Set donel to True (was False)
* skThread terminatedsix
* Schedule thread T3: main()
* Line 11: Harmony assertion failed: 90000

Harmony Output

Nemo:~/Documents/harmony/mycode] lorenzo% harmony example.hny
* Phase 1: compile Harmony program to bytecode
* Phase 2: run the model checker (nworkers = 8)
* 103 states (time 0.00s, mem=0.0800GB)
* Phase 3: analysis

Shortest path to
assertion failure

an executionsk

Here is a summary of an execution that exhibits the issue:
Ly P b O Dy Iy Dy
* Schedule thread TO: __init__()
* Line 13: Initialize done2 to False
* Line 13: Initialize donel to False
* Line 14: Initialize amount to 100000
* *kThread terminatedsik
* Schedule thread T1: Ti()
* Preempted in T1()
about to store 90000 into amount in line 2
* Schedule thread T2: T2()
* Line 6: Set amount to 50000 (was 100000)
* Line 7: Set done2 to True (was False)
* *kThread terminatedk
* Schedule thread T1: Ti()
* Line 2: Set amount to 90000 (was 50000)
* Line 3: Set donel to True (was False)
* skThread terminatedsix
* Schedule thread T3: main()
% Line 11: Harmony assertion failed: 90000

Harmony's VM State

@ Three parts:

o code (which never changes)
o values of shared variables
0 states of each of the running threads

» a.k.a. " “contexts”

State represents one vertex in the graph model

Context
(State of a Process)

® Method name and parameters
@ PC (program counter)
@ stack

@ local variables
o parameters (a.k.a. arguments)

o result

» there is no return statement

o local variables

» declared in var, let, and for statements

Harmony != Python

Harmony

tries all possible executions

== [1’ == (1,) = (1 == [1] ==
f(1) == 1 == f[1]
{}is empty set

few operator precedence rules ---
use parentheses often

variables global unless declared
otherwise

no return, break, continue
no classes

Python
executes just one
11=[1]1=(1)

[LI==0]=1)==1!=(1,)

f 1 and f[1] are illegal (if f is method)
{ } is empty dictionary

many operator precedence rules

depends... Sometimes must be
explicitly declared global

various flow control escapes
object-oriented

I/0 in Harmony

@ Input
0 choose expression

» X = choose({1,2,3})

» dllows Harmony to know all possible inputs

O const expression
b " const X =0

> can be overridden with "—c x = 4" to Harmony

@ Output
B oprint X+
0 assert x+y < 10, (x,y)

I/0 in Harmony

@ Input

No open(), read(), or input()

statements

@ Output
B oprint X+
0 assert x +y < 10, (x,y)

Non-determinism in
Harmony

@ Three sources
D0 choose expressions
o thread inferleavings

o Interrupts

Limitation: Models must

Tl sfored

(' / 90000 \

—init_ T1 got

Tib 90000
S T2
init
T1 loaded
100000

Tlb
amount = T1 loaded 100000 /
100000
T2 loaded

T2 loaded 100000
100000

T2b
T2a

Tla

T2b T1 got
510/00]0)
T2a

@ But models are allowed fto have cycles
® Executions are allowed to be unbounded

@ Harmony checks for the possibility of termination

Back to our problem...

Two threads updating shared variable amount
o T; wants to decrement amount by $10K

o T2 wants to decrement amount by 50%
i 12

amount := amount - 10,000; amount := amount * 0.5;

How to “serialize” these executions?

Critical Section

Shared memory access: must be serialized

T

CSEnter()
amount := amount - 10,000;
CSExit()

CSEnter()
amount := amount * 0.5;
CSExit()

® Goals

o Mutual exclusion: at most 1 thread in CS at any time

o Progress: all threads wanting to enter CS eventually do

o Fairness: equal chances to get into CS (uncommon in

practice)

Critical Section

Shared memory access: must be serialized

T

CSEnter()
amount := amount - 10,000;
CSExit()

CSEnter()
amount := amount * 0.5;
CSExit()

® Goals

o Mutual exclusion: at most 1 thread in CS at any time

o Progress: if any threads want to enter the CS, at least

one does

What makes the Critical
Section problem hard?

® Mutual exclusion?
@ Progress?
® It is the combination!

o both properties, on their own, are trivial fo
achieve

o there is much more to this...

Prelim Interlude

#include <stdio.h> /x declares printf() x/
#include <unistd.h> /% declares fork() x/

int main() {
Int 1
int pid;
int result = 0;
for (i=0; i<2; i++)
pld = Tark();
result ++;
printf ("result = %d\n", result);

1
2
3
4
2
6
7 4
8
9

o
W N R

}
if (pid = 0) {
printf ("result = %d\n", result);

=R
o Ul N

}

return 0;

=
00

How many times will the
value of result be printed?

First value(s)? Last value(s)?

result++

result = 0

result = 0
Pld = 33
result = 0

result = 0

#include <stdio.h> /x declares printf() x/
#include <unistd.h> /% declares fork() x/

int main() {
int 1:

int pid; ;
' Print?

int result = 0;

)\ result =1

1
2
3
4
2
6
7 4
8
9

for (i=0; i<2; i++) B pid = 33
10 pid = fork(); g g
11 result ++; result =1
12 printf ("result = %d\n", result); pid = 0
= : result++
14 ¥ fpld =—=9) 4
15 printf ("result = %d\n", result); ey

=
(@)

}

return 0;

=
00

) result =1
pid = 34

How many times will the i s
value of result be printed? 0 @ -

pid = 35

result++ R result =1

i pid =0

First value(s)? Last value(s)?

result = 0

#include <stdio.h> /x declares printf() x/
#include <unistd.h> /% declares fork() x/

int main() {
int 1:

int pid; ;
' Print?

int result = 0;

)\ result =1

1
2
3
4
2
6
7 4
8
9

for (i=0; i<2; i++) B pid = 33
10 pid = fork(); g g
11 result ++; result =1
12 printf ("result = %d\n", result); pid = 0
= : result++
14 ¥ fpld =—=9) 4
15 printf ("result = %d\n", result); ey

=
(@)

}

return 0;

=
00

T\ result =2
pid = 34

How many times will the .
value of result be printed? *°°

=X pid = 35

First value(s)? Last value(s)? Erini? -

o0 result =2
@ pid=0

result = 0

#include <stdio.h> /x declares printf() x/
#include <unistd.h> /% declares fork() x/

int main() {
int 1:

int pid; ;
' Print?

int result = 0;

)\ result =1

1
2
3
4
2
6
7 4
8
9

for (i=0; i<2; i++) B pid = 33
10 pid = fork(); g g
11 result ++; result =1
12 printf ("result = %d\n", result); pid = 0
= : result++
14 ¥ fpld =—=9) 4
15 printf ("result = %d\n", result); ey

=
(@)

}

return 0;

=
00

T\ result =2
pid = 34

How many times will the .
value of result be printed? P4°

=X pid = 35

Print? result++

First value(s)? Last value(s)? IRl

o2 result =2
_/ pid=0

