Priority Scheduling

@ Assign a number (priority) to each job and
schedule jobs in priority order

@ Can implement any scheduling policy

~ Reduces to SRTF when using as priority T,
(the estimate of the execution time)

@ To avoid starvation
o change job's priority with time (aging)
o select jobs randomly, weighted by priority

"Completely Fair Scheduler” (CFS)

Spent Execution Time

o SET: time process has been executing

@ Scheduler selects process with lowest SET

@ Given a quantum A and N processes on ready queue

o process runs for A/N time (there is a minimum value)
o If it uses it up, reinserted into queue with SET += A/N

o for efficiency, queue implemented as a red/black tree

For a process D that is new or sleeps and wakes up
O SETp = max (SETp, min{SET of ready processes})

@ To account for priority, SET grows slower for higher priority
processes

Multi-level
Feedback Queue (MFQ)

® Scheduler learns characteristics of the jobs it
IS managing

n Uses the past fo predict the future

@ Favors jobs that used little CPU...

D ..but can adapt when jobs change their
pattern of CPU usage

The Basic Structure

Q8 — (A —P (B @ Queues correspond to different
priority levels

Q7
o higher is better
Q6
% 4 : : A
as —» @ Scheduler. rur.ls J(?b in queue [if
no other job in higher queues
A
¥ @ Each queue runs Round Robin
3
5 @ Parameter:
Q2 o how many queues?
Ql ~$ (D

How are jobs assigned fo a queue?

Moving down

Q8 ~—¥ (A ¥ (B o Job starts at the top level

Q7 o If it uses full quantum before
Q6 giving up CPU, moves down

Q5 ¥ (C
Q4
Q3
Q2
Ql —$ (D

Q8
Q7
Q6
Q5
Q4
Q3
Q2
Ql

Moving down

@ Job starts at the top level

o If it uses full quantum before
giving up CPU, moves down

Q8
Q7
Q6
Q5
Q4
Q3
Q2
Ql

Moving down

@ Job starts at the top level

o If it uses full quantum before
giving up CPU, moves down

Q8
Q7
Q6
Q5
Q4
Q3
Q2
Ql

Moving down

- | A

—gp (C —% (B

@ Job starts at the top level

o If it uses full quantum before
giving up CPU, moves down

@ Otherwise, It stays were it is

® What about 1/0?

n Job with frequent I/0 will not
finish its quantum and stay at
the same level

® Parameter

o quantum size for each queue

Q8
Q7
Q6
Q5
Q4
Q3
Q2
Ql

Moving Up

- | A

-~ (D) —§ (B

@ A jobs behavior can change

o After a CPU-bound interval,
process may become I/0 bound

@ Must allow jobs to climb up
the priority ladder...
o As simple as periodically placing

all jobs in the fop queue, unfil
they percolate down again

Moving Up

e d Ed FEad Bad

Q7 @ A jobs behavior can change
o After a CPU-bound interval,

Q6 process may become I/0 bound
Q5 : .

@ Must allow jobs to climb up
Q4 the priority ladder...
Q3 o As simple as periodically placing

all jobs in the fop queue, unfil

Q2 they percolate down again
Ql

Moving Up

Q8 ~¥ (A

Q7 —p & —» G " jobs behavior can change
o After a CPU-bound interval,

Q6 process may become I/0 bound
Q5 : .

@ Must allow jobs to climb up
Q4 the priority ladder...
Q3 o As simple as periodically placing

all jobs in the top queue, until

Q2 they percolate down again
Ql

Moving Up

Q8 ~—¥ (A
Q7 & b —» (& @ A jobs behavior can change

‘ o After a CPU-bound interval,
Q6 —(cC process may become I/0 bound
Q5 : .

@ Must allow jobs to climb up
Q4 the priority ladder...
Q3 o As simple as periodically placing
all jobs in the top queue, until

Q2 they percolate down again
Ql

Q8
Q7
Q6
Q5
Q4
Q3
Q2
Ql

Moving Up

- | A
—$p D 8 B

@ A jobs behavior can change

o After a CPU-bound interval,
process may become I/0 bound

@ Must allow jobs to climb up
the priority ladder...

o As simple as periodically placing
all jobs in the fop queue, unfil
they percolate down again

® Parameter

o time before jobs are moved up

Sneeeeakyvy...

@ Say that I have a job that

Q8 ~—¥ (A —P (B requires a lot of CPU
o Start at the fop queue

Q7

o If I finish my quantum, I'll be
Q6 demoted...
Q5 ~¥ (¢
Q4 2.0 '

o ..just give up the CPU before my
Q3 quantum expires!
Q2 @ Remedy: Better accounting

| n fix a jobs time budget at each
Ql ~—§ (D level, no matter how it is used

o more scheduler overhead

Q8
Q7
Q6
Q5
Q4
Q3
Q2
Ql

Priority Inversion

PO S

-~ (A ~—% (B

@ Some high priority process is
waiting for some low priority
process

o e.g., low priority process has a
lock on some resources

@ Solution: Process needing lock
temporarily bestows its high
priority to lower priority
process with lock

Priority Inversion

padagy, 5 8
Q8 ~—¥ (A ~p (B —P(cC
Q7 @ Some high priority process is
Q6 waiting for some low priority
process
Q5 o e.g., low priority process has a
Q4 lock on some resources

Q3 @ Solution: Process needing lock
temporarily bestows its high
Q2 priority to lower priority

a —» @ process with lock

Multi-core Scheduling:
Sequential Applications

@ A web server
o A thread per user connection

o Threads are I/0 bound (access
disk /network)

» favor short jobs!

An MFQ, right?

o Idle cores take task off MFQ
o Only one core at a time gets access to MFQ

o If thread returns from I/0, back on the MFQ

Single MFQ
Considered Harmful

@ Contention on MFQ lock

@ Limited cache reuse

o since threads hop from core to core

® Cache coherence overhead

n core needs to fetch current MFQ state

0 on a single core, likely to be in the cache

o on a multicore, likely to be in the cache of
another processor

» 2-3 orders of magnitude more expensive to fetch

To Each (Process),
its Own (MFQ)

@ Cores use affinity scheduling

0 each thread is run repeatedly on the same core
» Mmaximizes cache reuse

o more complex fo achieve on a single MFQ

® Idle cores can steal work from other
processors

o re-balance load at the cost of some loss of cache
efficiency

o only if it is worth the time of rewarming the
cache!

Multicore Scheduling:
Parallel Applications

@ Application is decomposed in parallel tasks

o granularity roughly equal to available cores

» or poor cache reuse

o Often (e.g., MapReduce) I l I

Local compu’rahon

using bulk synchronous
parallelism (BSP)

Time

Barriers Communication
» tasks are roughly of
equal length

» progress limited by I . l

slowest core Local compu’ra’rlon

Scheduling Bulk
Synchronous Applications

Oblivious Scheduling

Each core time-slices its ready list independently

Four applications, ® ® ® @, each with four threads

| 1

A

2

3

F 4

S
%3
S

3

Woon
o
.

S 2

3
%
S
S

Length of BSP step deftermined by last scheduled thread!
Pink thread may be waiting on other pink threads holding lock

ey m =
Xl Gang Scheduling
Ve o \'r"@ Schedule all tasks from the same
W g3 { Y i
A PO application together

- Four applications, ® ® @ ®, each with four threads

| 2

3 A

A

A 1 2

2

SR
e
S0V TR T
R s

Concurrent Programming:
Critical Sections & Locks

An OS is a
concurrent program

@ The “kernel contexts” of each of the
processes share many data structures

0 ready queue, wait queues, file system
cache, and much more

@ Interrupt handlers also access those data
structures!

® Need to learn how to share

Lectures Outline - 1

@ What is the problem?

0 no determinism, no atomicity
@ What is the solution?

o some form of lock
@ How to implement locks?

0 there are multiple ways

Concurrent Programming

1S

@ Concurrent programs are non-defterministic

o run twice with same input, get different answers

o one time it works, another it fails

@ Program s

fatements are executed non-atomically

i |

compiles to something like

> LOAD x
» ADD 1

> STORE x

