Metrics

Response time

B Task is running

Time of [Geaemtaii lmesser
arrival

B Something else running

Turnaround time Job completed

@ Response fime

o How long between job’s arrival and first time job runs?

@ Total waiting time

o How much time on ready queue but not running?

> sum of “red” intervals above

@ Execution time: sum of “green” intervals

@ Turnaround time: “red” + “green”

o Time between a jobs arrival and its completion

@ Throughput: jobs completed/unit of time (e.g. 10 jobs/sec)

Other Concerns

@ Fairness: Who get the resources?

o Equitable division of resources

@ Starvation: How bad can it get?

o Lack of progress by some job

® Overhead: How much useless work?

o Time wasted switching between jobs

@ Predictability: How consistent?

o Low variance in response time for repeated
requests

When does the
Scheduler Run?

@ Non-preempftive

0 job runs until it voluntarily yields the CPU

» process blocks on an event (e.g., I/0 or P(sem))
» process explicitly yields

» process terminates

@ Preemptive

o all of the above, plus timer and other interrupts

» when processes cant be trusted

D incurs some context switching overhead

Context switch overhead

@ Cost of saving registers (including, if
appropriate, page table register)

@ Cost of scheduler determining which process/
thread to run next

@ Cost of restoring registers (including, if
appropriate, page table register)

@ Cost of flushing caches
o L1, L2, 37 TEB

The Perfect Scheduler

@ Minimizes response time and turnaround time for
each job

@ Maximizes overall throughput

@ Maximizes resource utilization (“work conserving”)
@ Meets all deadlines

@ Is fair: everyone makes progress, no one starves

@ Is envy-free: no core envies the schedule assigned to
another core

® Has zero overhead

Alas, no such scheduler exists...

Basic Scheduling
Algorithms

@ FIFO (First In First Out) a.k.a. FCFS
@ SJIF (Shortest Job First)
® EDF (Earliest Deadline First)
0O preemptive
@ Round Robin
0 preemptive
@ Shortest Remaining Time First (SRTF)

0 preemptive

FIFO

@ Jobs Ji,J,J3 with compute time 12, 3, 3. Same
arrival time (so can be scheduled in any order)

0 Scenario 1: Schedule order Ji, Js, J3

% LN £ : ‘ Average
A $u (12+415+18)/3 = 15

Time O 12 15 18

FIFO

@ Jobs Ji,J,J3 with compute time 12, 3, 3. Same
arrival time (so can be scheduled in any order)

0 Scenario 1: Schedule order Ji, Js, J3

%

AR S IR ‘ Average
—_— ' (12+15+18)/3 = 15

Time O 12 15 18

0 Scenario 2: Schedule order J2, Js3, J1

" R R o g Average
R Jl R Turnaround Time:
: Sl sl TR el (3+6+18)/3 = 9

Time O 3) 18

Average turnaround time very sensitive to schedule order!

FIFO Roundup

Simple
Low overhead
No starvation

Average turnaround time
- very sensitive fo order/
arrival fime

Not responsive to
interactive tasks

How to minimize average
turnaround time?

SJF: Shortest Job First

@ Schedule jobs in order of estimated completion time
(or, better, shortest length of next CPU burst!)
i

1.5 C

3
C3

length
- e

SJF: Shortest Job First

@ Schedule jobs in order of estimated completion time

0 1 2.5

SJF: Shortest Job First

@ Schedule jobs in order of estimated completion time

G| s | ca N
2 1 2.5 45

10 14

.5 7

@ Average Turnaround time (att): 39/6 = 6.5

® Would a different schedule produce a lower

turnaround time?

consicer (G

where ¢; <¢j

att = (¢j + (ci +¢;))/2

SJF: Shortest Job First

@ Schedule jobs in order of estimated completion time

- C9 | ca B C4
0] 1 2.5 -

) 7 10 14

@ Average Turnaround time (att): 39/6 = 6.5

® Would a different schedule produce a lower
turnaround time?

Consider [FNCH NN \here c; < c

att = (c; + (& ¢))i2 att = (seler Fci)) 2

SJF Roundup

A
—

Optimal average
The Good | turnaround time

Job’s turnaround time depends
on length of other jobs

Pessimal variance in turnaround

time for a given task
The Bad

Need to estimate
execution time

Can starve long jobs

SJF Roundup

Optimal average
The Good | turnaround time

Job’s turnaround time depends
on length of other jobs

Pessimal variance in turnaround

time for a given task
The Bad

Need to estimate
execution time

Can starve long jobs

Shortest Process Next
(SJF for interactive jobs)

@ Enqueue in order of estimated completion time

o Exponential moving average (EMA): Use recent
history as indicator of near future

@ Let t, = duration of n'" CPU burst
7. — estimated duration of n!* CPU burst

7,11 = estimated duration of next CPU burst

Tnil= aTp+(1 — a)t,

0<a <1 determines weight placed on past behavior

Earliest Deadline First (EDF)

@ Schedule in order of earliest deadline;
preemptive

@ If a schedule exists that meets all deadlines,
then EDF will generate that schedule!

n does not even need to know the execution times of the jobs!

Informal Proof

D Let S be a schedule of a set of jobs that meets all deadlines

0 Let J1 and J2 be two neighboring jobs in S so that ji.deadline > j2.deadline

D Let S’ be S with j; and j; switched
> S’ also meets all deadlines! B e

0 Repeat until sorted (i.e., bubblesort) ' o

: : : both deadlines
» Resulting schedule is EDF are met

J2 Ja

Earliest Deadline First (EDF)

@ Schedule in order of earliest deadline;
preemptive

@ If a schedule exists that meets all deadlines,
then EDF will generate that schedule!

n does not even need to know the execution times of the jobs!

Informal Proof

D Let S be a schedule of a set of jobs that meets all deadlines
0 Let J1 and J2 be two neighboring jobs in S so that ji.deadline > j2.deadline
D Let S’ be S with j; and j; switched

> S’ also meets all deadlines! e T S
D Repeat until sorted (i.e., bubblesort
: : (. holgsor) both deadlines//
» Resulting schedule is EDF are met :

J2 Ja

When EDF fails

@ Two jobs:

0 ji: deadline at t=12; 1 unit of computation, 10 of I/0

0 jo: deadline at t=10; 5 units of computation

t=0 t=5 t=6 — 10 t=12

EDF:

When EDF fails

@ Two jobs:

0 ji: deadline at t=12; 1 unit of computation, 10 of I/0

0 jo: deadline at t=10; 5 units of computation

@ Need to think of jobs at a finer granularity:

0O Real deadline for the computing portion of j; is 2!

EDF Roundup

Meets deadlines if possible (but beware...)

Free of starvation

CPU-bound jobs will make
. I/O-bound jobs wait

Cannot decide when to
run jobs without deadlines

Round Robin

@ Each process is allowed to run for a quantum

@ Context is switched (at the latest) at the end of
the quantum — preemption!

@ Next job to run is the one that hasnt run for the
longest amount of time

@ What is a good quantum size?
o Too long, and it morphs into FIFO
o Too short, and foo much time lost context switching

o Typical quantum: about 100X cost of context switch
(~100ms vs. << 1ms)

Round Robin vs FIFO

5 jobs of about equal length (5 units of time)

21 |
o 5 - El
N & B
I F ‘ '241
! B o B 25|
T
RR T Average Turnaround time

(21 + (22-1) + (23-2) + (24-3) + (25-4)) / 5

Average Turnaround time ' o T |
(5 + (10-1) + (15-2) + 2 T e _
(20—3) + (25—4)) / 5=13 15

At least it is fair.?

@ Mix of one I/0O-bound and two CPU-bound jobs
o I/O-bound: compute; go to disk; repeat

compute go to disk compute go to disk
e, fomoms: o
I/0 Bound %”VET Twarl' o T R SN B S %ﬁﬁ
ISS;:J/G(; 1/0 Iss;/eos 1/0
Request completes Requea completes

CPU Bound 100ms quantum 100ms quantum

CPU Bound 100ms quantum

Time

Round Robin Roundup

No starvation

Can reduce response time

Overhead of confext switching
" Mix of I/O and CPU bound

Particularly bad average turnaround
for close-in arrival-time, equal length
jobs

SJF

@ J, arrives at time 0; J5, J3 arrive at time 10

Average Turnaround Time:
100+(110-10)+(120 -10)/3
= 103.33

10 ‘]1

TimeO JQIJ3 100 10 120
arrive

SJF + Preemption

@ .J, arrives at time O; J5,J3 arrive at time 10

: 23 : J Average Turnaround Time:
10] 100+(110-10)+(120 -10)/3
i ’ - 103.33
TimeO 5! J; 100 10 120
arrive
1 1 L Shortest Remaining
@ With a preemptive scheduler — SRTF "= e

: Often same job is selected,
At end of each quantum, scheduler selects job B context switch..

with the least remaining time fo run next B . buf new short jobs see

improved response time
J2, J3

arrive

< N Average Turnaround Time:
Jq i (120-0)+(20-10)4+(30-10)/3

= 50
TimeO 10 20 30 120

SRTF Roundup

Good response time and
turnaround time of I/0
bound processes

' Bad turnaround time and response
time for CPU bound processes

Need estimate of execution for each job

Starvation

