Where should threads be
implemented?

@ In both!
@ Kernel multiplexes each physical i

CPU across multiple threads

@ Kernel can assign one or more

threads fo a process % % % % % %
k k k k k k

@ Scheduler schedules threads

@ User level library multiplexes the
process’ single kernel thread
across multiple user level threads

Hardware

How does a multi-threaded
process look like?

Shared Per-Thread Per-Thread
State State State

PCBS

little sibling

Note: No protection enforced at the thread level!

Processes vs. Threads:

PLUTARCH'S LIVES
’

VOLUME 11

Processes vs. Threads:
Parallel lives

Processes

@ Have data/code/heap and other
segments

@ Include at least one thread

o If a process dies, its resources are
reclaimed and its threads die

@ Interprocess communication via OS and
data copying

@ Have own address space, isolated from
other processes’

@ Each process can run on a different
processor

@ Expensive creation and context switch

Threads

@ No data segment or heap

@ Needs to live in a process

@ More than one can be in a process.
First calls main.

@ If a thread dies, its stack is reclaimed
@ Inter-thread communication via memory

@ Have own stack and registers, but no
isolation from other threads in the
same process

® Each thread can run on a different
processor

@ Inexpensive creation and context switch

PCB vs TCB

@ Several fields are in common
o Respective ID, State, Priority, Register values

@ PCB contains information about the resources shared
by all that process’ threads

o memory allocation, file descriptors, signal handlers

@ In multi-threaded processes,
each PCB contains a pointer to
a list of TCBs

@ TCB has a back pointer to the
PCB it belongs to

A simple API

Creates a new thread in thread, which will execute
function func with arguments arg.

Ay .
NI edad

Calling thread gives up processor. Scheduler can
resume running this thread at any time

Wait for thread to finish, then return the value
thread passed to thread_exit.

LL |
wig'ﬂf“lq] r

TN ead

vVOIU

Finish caller. Store return value on TCB.
If another thread is waiting on thread_join, resume it.

""“’Y"‘la‘, L"’B T

eT

Threads Life Cycle

© Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Thread creation
(e.g. thread create())

TCB: being created
Registers: in TCB

Threads Life Cycle

© Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Scheduler
Thread creation resumes thread

(e.g. thread_creata())

Thread yields
Scheduler suspends thread
(e.g. thread_yle1d())

TCB: Ready list
Registers: in TCB (or
pushed on thread’s stack)
SP in TCB 7

Threads Life Cycle

© Threads (just like processes) go through a sequence of

Init, Ready, Running, Waiting, and Finished states

Thread walits for event
) (e.g. thread_join())

@

150

Scheduler

Thread creation resumes thread

(0.0 thread creata())

@ @

Thread yields
Scheduler suspends thread
(.g- thread yierd)

Event occurs
(e.g. other thread
calls ehread exit())

TCB: Ready list
Registers: in TCB (or on
threads stack). SP in TCB

Threads Life Cycle

© Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Scheduler
Thread creation resumes thread

(e.g- thread _create()) }/ —
TCB: Ready list .E

Registers: in TCB (or
pushed on thread$s stack).
SP in TCB s

@O ©

Threads Life Cycle

© Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states
Scheduler

Thread creation
(e.g- thread _create())

TCB: Ready list

resumes thread
(romns)
Registers: in TCB (or
pushed on thread’s stack).

SP in TCB s

Threads Life Cycle

© Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Scheduler
Thread creation resumes thread

(e-g. thread_create())

Thread yields
Scheduler suspends thread
(e.g- thread yierd()

TCB: Running list
Registers: Restored

from TCB or threads

stack into CPU s

Threads Life Cycle

© Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Scheduler

Thread creation resumes thread

(e.g. thread_creata())

® @

Thread yields
Scheduler suspends thread
(e.g. thread_yie1d())

@

151

Event occurs
(e.g. other thread
calls thread_exit())

Thread waits for event
(e.g. thread_join())

TCB: Running list
Registers: Processor

Threads Life Cycle

© Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Scheduler
Thread creation resumes thread

(e.g. thread_creata())

Finished

Thread yields
Scheduler suspends thread
(e.g. thread_yierd())

Thread waits for event
(e.g. thread joian())

TCB: On specific waiting /
queue

Registers: TCB or pushed
on kernel stack 19

Threads Life Cycle

© Threads (just like processes) go through a sequence of
Init, Ready, Running, Waiting, and Finished states

Scheduler

resumes thread e ot

(@.g. thread_exit())

Thread creation
(e-g. thread_create())

Thread yields
Scheduler suspends thread
(e.g. thresd _yierdn))

Event occurs
(e.g. other thread
calls thread_extt())

TCB: Finished list (fo pass
exit value), then deleted
Registers: TCB (no longer
needed)

Thread waits for event
(e.g. thread_join())

\\

One Abstraction,
Two Implementations

@ User Threads

o implemented entirely in user space; invisible to the
kernel

o one PCB for the process

o each thread has its own Thread Control Block (TCB)
[implemented in the host process’ heap]

@ Kernel Threads
o visible (and schedulable) by kernel

o each thread has own TCB and stack in the kernel (in
addition to a stack in user space, if appropriate)

» kKernel threads need not be associated with user threads

Preempt or
Not Preempt?

@ Preemptive
o yield automatically upon clock interrupts
o true of most modern threading systems

@ Non-preemptive
D explicitly yield fo pass control fo other threads

@ Most modern threading systems are preemptive
D0 but not CS4411 Pl project

Preemption for
U threads

@ Use a timer signal (SIGALRM)

0 Use the alarm() or setitimer() system calls to generate
a SIGALARM signal after a specified time

o Define a signal handler for the SIGALRM signal, which

must:
» save the context of the current thread

» Select the next thread to run

» restore its context

@ User process must also maintain a ready queue to hold
contexts of ready threads

Kernel- vs.
Only User-level Threads

Easy to implement: just like process, Requires implementing user-level
but with shared address space schedule and context switches

Blocking system call blocks all threads:

Thread can run blocking systems | avoiding that requires OS support for
call concurrently non-blocking system calls (asynch call +

callback, as in scheduler activations)

Thread switch requires Thread switch efficiently implemented
three context switches in user space
Require OS support Can be implemented on any OS
Can leverage multiple cores Cannot leverage multiple cores

Kernel- vs. User-level
Thread Switching

Thread 1 Thread 2

User
Space

Kernel |
Space

https://www.youtube.com/watch?v=ycm5I1ZrpKs

What is a shell?

An interprefer

@ Runs programs on behalf of the user

@ Allows programmer to create/manage set of programs

o sh Original Unix shell (Bourne, 1977)
o csh BSD Unix C shell (tcsh enhances it)
o bash “Bourne again” shell

@ Every command typed in the shell starts a child process
of the shell

@ Runs at user-level. Uses syscalls: fork, exec, etc.

The Unix shell (simplified)

while(! EOF)

read input

handle regular expressions

int pid = fork() // create child

if (pid == 0) { // child here
exec("program”, argc, argvo,...);

;

else { // parent here

;

Some important
commands

@ echo [args] # prints args

@ pwd # prints working directory

@ ls # lists current directory

@ cd [dir] # change current directory

@ ps # lists your running processes

Commands can be modified with flags

o Is -l # long list of current directory

@ ps -a # lists all running processes

Foreground vs
Background

@ The shell is either
o reading from standard input or
o waiting for a process to finish

> this is the foreground process

» other processes are background processes

@ To start a background process, add &
o (sleep 5; echo hello) &
D X &Yy # runs x in background and y in foreground

Pipes

x|y
o runs both x and vy in foreground
o output of x is input oy
o finishes when both x and y are finished

F ‘F"'I _'_A' -1
,i\ P
i b

. . echolorenzoltrrbltrnrltrzt|trLR
—

-

,.{b :

o
W

CPU Scheduling

(Chapters 7-11)

Mechanism and Policy

@ Mechanism
D enables a functionality — e.g., the dispatcher

@ Policy

0 determines how that functionality should be
used — e.g., the scheduler

Mechanisms should not deftermine policies!

The Problem

@ You are the cook at the State Street Diner
0 Customers enter and place orders 24 hours a day

o Dishes take varying amounts of time to prepare

® What are your goals?
0 Minimize average turnaround fime?

0 Minimize maximum turnaround time?

® Which strategy achieves your goal?

Context matters!

@ What if instead you are:

D0 the owner of an expensive container ship, and
have cargo across the world

0 the head nurse managing the waiting room of
an emergency room

o a student who has to do homework in various
classes, hang out with other students, eat, and
(occasionally) sleep

Schedulers in the OS

® CPU scheduler selects next process fo run
from the ready queue

@ Disk scheduler selects next read/write
operation

@ Network scheduler selects next packet to
send or process

@ Page Replacement scheduler selects page fo
evict

Scheduling threads

@ OS keeps TCBs on different queues

0 Ready threads are on ready queue - OS chooses
one to pass to the dispatcher

0 Threads waiting for I/O are on appropriate device
queue

0 Threads waiting on a condition are on an
appropriate condition variable queue (we'll see
about those)

@ OS regulates TCB migration during life cycle of
corresponding thread

Why scheduling is
challenging

@ Threads are not created equal!
o CPU-bound thread long CPU bursts

» mp3 encoding, compilation, scientific applications

\ CPU bursts
o I/O-bound thread: short CPU bursts

» index a file system, browse small web pages

@ Problem

o dont know type before running

0 behavior can change over time

Job Characteristics

@ Job: A task that needs a period of CPU time

D0 A user request: e.g., mouse click, web request,
shell command...

@ Defined by:

o Arrival time
» When the job was first submitted

o Execution time

» Time needed to run the task in isolation

0 Deadline

» By when the task must have completed (e.g. for videos,
car brakes...)

Metrics

Response time

B Task is running

Time of [Gecemtain lmessert
arrival

B Something else running

Turnaround time Job completed

@ Response fime

o How long between job’s arrival and first time job runs?

@ Total waiting time

o How much time on ready queue but not running?

> sum of “red” intervals above

@ Execution time: sum of “green” intervals

@ Turnaround time: “red” + “green”

o Time between a jobs arrival and its completion

@ Throughput: jobs completed/unit of time (e.g. 10 jobs/sec)

