Fork in action

#include <stdio.h>
#include <unistd.h>

int main() {

int child_pid = fork();

if (child_pid == 0) { // child process
printf("I am process %d.. I mean, process %d\n”, childpid, getpid());
return O;

1 else { // parent process
printf("I am %d the parent of process %d\n", getpid(), child_pid);
return O;

;

Possible outputs?

Creating and managing
processes

Syscall Description

Create a child process as a clone of the current process. Return to both
parent and child. Return childs pid to parent process; return O to child

Run application prog in the current process with the specified args (replacing
any code and data that was present in process)

Pause until a child process has exited

Current process is complete and should be garbage collected.

Send an signal (= interrupt) of a specified type to a process
(a bit of an overdramatic misnomer...)

Signals

@ Signals allow the kernel fo inform processes of
the occurrence of asynchronous events

@ Just as the HW can generate an asynchronous
interrupt, which is caught by a handler specified
by the kernel...

@ ..S0 the kernel can generate an asynchronous
signal, which is caught by a handler specified by
the user process

Signals: What purpose?

@ Inform of the ftermination of a process

@ Handle exceptions (e.g. attempting to access
address outside of virtual address space)

@ Handle unexpected error conditions during a sys
call (e.g. passing a non-existent syscall no.)

@ Asking to receive an alarm after a period of fime

@ Communicating with other processes via Kill
syscall

@ Inform of a terminal interaction (e.g., ctrl-C)

How does the Kernel
send a signal?

@ It sets a bit in the process’ PCB
0 PCB includes a bit for every possible signal...
o ..but just one bit

» can remember multiple types of signals

» but not multiple instances of the same type

@ Kernel checks for signals only when process
returns from Kernel mode to User mode

o thus, a user process that is not running is not
notified right away

How is a signal handled?

@ Three cases
1. Process exits (default)
2. Process ignores the signal

3. Process executes a specific user defined function

o function specified with the signal system call
» signal (signum, &function)
> signal (signum, 0) = exit

> signal (signum, 1) = ignore

Some POSIX Signals

Name Defqul’r Corresponding Event
Action
: Interrupt
SIGINT Ti t
S (e.g., CTRL-C from keyboard)
Terminate : e |
SIGQUIT (Core dumin) Terminal quit signal
SIGFPE Terminate Kill program
: Kill program
IGKILL
218 Terming s (cannot be caught or ignored)
SIGALRM Terminate Timer signal
SIGCHLD Ignore Child stopped or fterminated
SIGSTP Stop until Stop signal from terminal
SIGCONT (e.g., CTRL-Z from keyboard)

Signal Handling:
The Mechanism

NmeF
spec ﬁdglh dl

After

Signal Handling:

The Mechanism

§ return address
¥ New frame for user-
specified signal handler

stack up as if interrupt
occurred right before

void int_handler(int sig) {
printf("Process %d received signal %d\n", getpid(), sig);
exit(0);

}

int main() §
pid_t pid[N];
int i, child_status;
signal(SIGINT, int_handler) // register handler for SIGINT
for (i = 0; i < N; i++) // N forks
if ((pid[i] = fork()) == 0) {
while(1); // child infinite loop
}
/* Parent terminates the child processes */
for (i=0;i<N;i++){ // parent continues executing
printf("Killing proc. %d\n", pid[il);
Kill(pid[i], SIGINT);
}
/* Parent reaps terminated children */
for (i=0;i <N;i++) §
pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status)) // parent checks for each childs exit
printf("Child %d terminated w/exit status %d\n", wpid,

WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);

}
exit(0);

Header files

: #include <sys/wait.h> §
£ #include <stdio.h> §
§ #include <unistd.h?

Handler
Example

Review

@ A process is an abstraction of a running program

@ The process’ context captures its running state:
@ registers (including PC, SP, PSW)
@ memory (including the code, heap, stack)

@ The implementation uses two contexts:
@ user context
@ kernel (supervisor) context

@ A Process Control Block (PCB) serves both contexts and
has other information about the process

Review

@ Processes can be in one of the following states:
o Initializing
A
0 Ready (aka “"runnable” on the “ready” queue)
o Waiting (aka Sleeping or Blocked)

a

More Processes
than Processors

@ Solution: time multiplexing

0 Abstractly each processor runs:

» for ever:
— NextProcess = scheduler()
— Copy NextProcess->registers to registers
— Run for a while

— Copy registers to NextProcess->registers

0 Scheduler selects some process on the
ready queue

Three Flavors of
Context Switching

@ Inferrupt: from user to kernel space
o on system call, exception, or interrupt
o Stack switch: Px user stack — Px inferrupt stack

@ Yield: between two processes, inside kernel
o from one PCB/interrupt stack to another
o Stack switch Py interrupt stack — Py interrupt stack

@ Return from interrupt: from kernel fo user space
o with the homonymous instruction
o Stack switch: Py interrupt stack —Px user stack

User
Space

Kernel
Space

Switching between
Processes

Process 1 Process 2

1. Save Process 1 user registers
(including SP and PC)

2. Save Process 1 kernel registers;

b | — Do switch SP; restore Process 2
£ % kernel registers

, disk_read() #Pg?g;n 3. Restore Process 2 user registers

scheduler selects § interrupt
ready process ’

Threads

Our second major abstraction
(Chapters 25-27)

A new Abstraction

@ The process abstraction gives each running
program the illusion of running on a machine of
their own

o CPU & Memory

@ Context switching allow to support multiple “virtual
machines” on top of a single physical machine

@ ..but a machine may have multiple CPUs...

Threads

@ It is how the kernel virtualizes a CPU!
o A threads state consists of
» registers (including PC and SP)
» a stack
n it lives inside some host address space (provided
by the host process)

@ Just as a single machine can have multiple CPUs,
so a single process can host multiple threads

o all sharing the same Virtual Address Space (the
one of the host process)

The Power of
Abstractions

Infinite machines!’

Infinite cores!®

ton a single CPU (?!?)

Processes and Threads

@ The processes that we have described so far host one
thread only

@ Many OSs offers the ability to have multiple concurrent
threads execute in a process

o Multiple threads in a process allow multiple task to be

performed concurrently, at the same time (at least,
logically)

» multiple processes too —but they do not easily communicate. A
process’ threads instead share the same memory!

@ A kernel that supports multi-threading manages hardware
resources differently:

n CPU state managed on a per-thread basis

o All other resources on a per-process basis

Why Threads?

@ To express a natural program structure

o updating the screen, fetching new data, receiving user input —
different tasks within the same address space

@ To exploit multiple processors

o different threads may be mapped to distinct processors

@ To maintain responsiveness
o slow, long running task performed by background threads

o foreground threads respond immediately fo user interactions

@ Masking long I/0 device latency in blocking syscalls

o do useful work while waiting

Multithreading:
Responsiveness

@ Common web browser pattern:
o UI thread draws web page, handles mouse clicks
o Pool of background threads downloads web pages

from remote web servers

@ Does this require multiple CPUs to yield a benefit?
o NO!
o BG threads will usually be blocked on 1/0
o Ditto for UI thread

@ Even with a single processor, multithreading can
greatly improve application responsiveness

o especially when tasks are I/0 bound

Multithreading:
Scalability

@ A large scientific/mathematical computation:
o instead of using a single thread, split in multiple concurrently
executing threads

@ Does this require multiple CPUs to yield a benefit?
. eS!
o Threads will be mostly CPU bound, not I/0 bound

o With only one CPU, multithreading will actually likely slow
execution, not speed it up!

» (context switches, synchronization overheads, etc)

@ On the other hand... A single-threaded process cannot
take advantage of multiple CPUs

o need either multiple processes, or one process with multiple
threads

Multithreaded Processing
Paradigms

Dispatcher/Workers Specialists Pipeline

Where should threads be
implemented?

@ In the Kernel!

@ Kernel mulfiplexes each
physical CPU across multiple
threads

@ Kernel can assign one or % % % % % %
more threads to a process ‘ . k k ¢ ¢

@ Scheduler schedules threads

Hardware

Where should threads be
implemented?

@ In the Kernel!

@ Kernel mulfiplexes each
physical CPU across multiple
threads

@ Kernel can assign one or % % % % % %
more threads to a process ¢ i ¢ s

@ Scheduler schedules threads

Hardware

Where should threads be
implemented?

@ In User space!

S

@ Kernel assigns one thread per z
process

@ Kernel multiplexes each physical
CPU across multiple processes

<

¥

@ Scheduler schedules processes

@ User level library multiplexes the
process’ single kernel thread
across multiple user level threads

Hardware

Where should threads be
implemented?

@ In both!
@ Kernel multiplexes each physical
CPU across multiple threads ‘ |
@ Kernel can assign one or more /

threads fo a process % % % % % %

@ Scheduler schedules threads

@ User level library multiplexes the
process’ single kernel thread
across multiple user level threads

Hardware

