How to Yield/Wait?

@ Must switch the "CPU state” (the context)
captured in its registers and PSW

@ Must switch from executing the current
process to executing some other READY process

D0 Current process: RUNNING — READY
o Next process: READY — RUNNING

1. Save kernel registers of Current on its kernel stack
2. Save Kernel SP of Current in its PCB

3. Restore kernel SP of Next from its PCB

4. Restore Kernel registers of Next from its kernel stack

How to Yield/Wait?

@ Must switch the "CPU state” (the context)

captured in its registers and PSW

@ Must switch from executing the current

process to executing some other READY process

D0 Current process: RUNNING — READY

o Next process: READY — RUNNING
!

content of general
registers while
running in kernel
mode

1. Save kernel registers of Current on its kernel stack

2. Save kernel SP of Current in its PCB
3. Restore kernel SP of Next from its PCB

4. Restore Kernel registers of Next from its kernel stack

Yielding in Slo-Mo

from p to g
P's kernel stack

@ Process p receives a
timer interrupt

' Stack H i running \
GGG

Yielding in Slo-Mo

from p to q
DS kernel stack
@ Process p receives a | s Pc P Psw
A 4 3 d
timer interrupt Ksp — | Geaprrocy)

o HW pushes PC, SP, PSW

~ Stack HW is running \
GGG

Yielding in Slo-Mo

from p to q

P's kernel stack

| pspc sppsw |
" (user mode) |
i |

 pSs select registers §

@ Process p receives a
timer interrupt
o HW pushes PC, SP, PSW

o SW (handler) pushes KSP >
select general registers |

(user mode)

Stack HW is running
GGG

Yielding in Slo-Mo

from p to q

P's kernel stack

il pspc o spPsw |
: (user mode) |
i -
ps select registers E
i (user mode)

vield() stack frame }
 (contains return KPC)

o handler (dispatcher) Ksp — 1
calls yield()

@ Process p receives a
timer inferrupt
o HW pushes PC, SP, PSW

o SW (handler) pushes
select general registers

Stack HW is running
GGG

Yield()

dusdi et /

{ struct pcb *current, *next;

b void vield()§ i
| assert(current->state == RUNNING); |
current->state = READY; '
readyQueue.add(current);
next = scheduler();

next->state = RUNNING; ,
ctx_switch(¤t->sp, next->sp) |
current = next; ‘

Yield()

dusdi et /

{ struct pcb *current, *next;

b void vield()§ i
| assert(current->state == RUNNING); |
current->state = READY; '
readyQueue.add(current);
next = scheduler();

next->state = RUNNING; ,
ctx_switch(¤t->sp, next->sp) |
current = next; ‘

Yielding in Slo-Mo

from p to q

P's kernel stack
ps PC, SP, PSW

'1 |
i |

@ Process p receives a
timer inferrupt
o HW pushes PC, SP, PSW

o SW (handler) pushes
select general registers

ps select registers B

\
.f'

i (user mode)

vield() stack frame }
 (contains return KPC)

o handler (dispatcher) Ksp — }
calls yield()

{ c_switch() stack frame!
i (contains return KPC) §

o dispatcher calls KSP — |
context_switch()

Stack HW is running
GGG

ctx_switch(&old_sp, new_sp)

ctx_switch: //PC already saved in frame!
pushq %rbp
pushq %rbx
pushq 7%rl5

pushq %rl4
pushq %rl3
pushq %rl2
pushq %rll
pushq %rl0
pushq 7%r9

pushq %r8

next;

| struct pcb *current, *

t void yield()§ |
- assert(current->state == RUNNING); |
current->state = READY; ‘
readyQueue.add(current);
next = scheduler();

next->state = RUNNING;
ctx_switch(¤t->sp, next->sp) }
current = next;

ctx_switch(&old_sp, new_sp)

ctx_switch: //PC already saved in frame!

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq

%rbp
Zrbx
%r15
%orlb

AK!
A

%rill
%r10
%19
%18

ps PC, SP, PSW
(user mode)

§ ps select registers

(user mode)

yield() stack frame 1}

 (contains return KPC)

{ c_switch() stack frame
| (contains return KPC) §

Stack HW is runnig

ctx_switch(&old_sp, new_sp)

ctx_switch: //PC already saved in frame!

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
movq

movq

%rbp
Zrbx
%r15
%orlb

AK!
A

%rill
%r10
%19
%18

copies p's stack pointer
into ps PCB (pointed to
by address in rdi)

%rsp,(‘/’{,rdi)<———|

%rsi, %rsp +——

copies g's KSP (stored
in rsi) into CPU's
stack pointer register

Ps kernel stack

ps PC, SP, PSW
(user mode)

§ S select registers

(user mode)

yield() stack frame 1}

 (contains return KPC)

{ c_switch() stack frame
| (contains return KPC) §

| p's kernel registers

Stack HW is runnig

ctx_switch(&old_sp, new_sp)

ctx_switch: //PC already saved in frame!

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
movq

movq

%rbp
Zrbx
%r15
%orlb

AK!
A

%rill
%r10
%19
%18

copies p's stack pointer
into ps PCB (pointed to
by address in rdi)

%rsp,(%rdi)«——|

%rsi, %rsp +——

copies g's KSP (stored
in rsi) into CPU's
stack pointer register

P is running,
but using ¢'s
stack!

KSP

q's krnel sfac

gs PC, SP, PSW
(user mode)

§ 45 select registers

(user mode)

yield() stack frame }

z (contains return KPC)

f c_switch() stack frame;
| (contains return KPC) §

gs kernel registers

Stack HW i unning |

ctx_switch(&old_sp, new_sp)

ctx_switch: //PC already saved in frame!

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
movq
movq
POPq
POPq
POPq
POPq
POPq
POPq
POPq
PoPq
POPq
PoPq

%rbp g ‘s kernel stack
%rbx JECROESNHISMIENP R AR AR (S SRS I A
AL .
%rlh l gs PC, SP, PSW
ASK (user mode)
%rl12 :
o copies p's stack pointer 4 7 .
;ri:) into ps PCB (pointed to 3 & select regls’rers
;:9 by address in rdi) (user mode)
%r8 ‘__J 5
%rsp, (%rdi) yield() stack frame 1}
%rsi, %rsp < (contains return KPC) |
%r8 ‘
VAR T i

pies gs KSP (stored : .
%10 o e _ c_switch() stack frame:
%ril stack pointer register i (contains return KPC) §
%r12 : ;
%rl3 e !
%rl4 L gs Kernel registers
%r15 KSP — §
Zrbx
%rbp

Stack HW i unning |

ctx_switch(&old_sp, new_sp)

ctx_switch: //PC already saved in frame!

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
movq
movq
POPq
POPq
POPq
POPq
POPq
POPq
POPq
PoPq
POPq
PoPq

%rbp g s kernel stack

A) /
;:1 ; 4's PC, SP, PSW

%rl3 : (user mode)

%r12
%ril copies p's stack pointer

%r10 into ps PCB (pointed to
°°r by address in rdi) (user mode)
AR |

§ 45 select registers

%r8 ‘__J Q ,
%rsp, (%rdi) | yield() stack frame 1}

%rsi, %rsp +— (contains return KPC) |
%r8

o,
%19 copies g's KSP (stored
%r10 in rsi) info CPU’s

%ril stack pointer register (contains return KPC) §
%ri12 KSP > “: ;
%r13 . 4
%rl4 _p.w .
%115 PoppIng ¢gs
%rbx kernel registers
%rbp on the CPU!

{ c_switch() stack frame:

Stack HW i unning |

ctx_switch(&old_sp, new_sp)

ctx_switch: //PC already saved in frame!

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
movq
movq
POPq
POPq
POPq
POPq
POPq
POPq
POPq
PoPq
POPq

PoPq
retq

%rbp g ‘s kernel stack

A) /
;:1 ; 4's PC, SP, PSW

ASK : (user mode)

%r12
%ril copies p's stack pointer

%r10 into ps PCB (pointed to
°°r by address in rdi) (user mode)
AR |

§ 45 select registers

%r8 ‘__J Q ,
%rsp, (%rdi) | yield() stack frame 1}

%rsi, %rsp < (contains return KPC) |
%r8 ,

()
719 copies g's KSP (stored
%r10 in rsi) info CPU’s

%rll stack pointer register A (contains return KPC) §
;rg KSP — ¢} ‘
ol" £
%rl4
%115
Z%rbx
%rbp

f c_switch() stack frame;

Stack HVVi;>funning}

ctx_switch(&old_sp, new_sp)

ctx_switch: //PC already saved in frame!

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq
movq
movq
POPq
POPq
POPq
POPq
POPq
POPq
POPq
PoPq
POPq

PoPq
retq

%rbp
%rbx
%r15

%orl4
AYK]
%r12
%rill
%r10
%19

%18

%18
%19
%110

%ril
%r12
yAK
%rl4
%115
Z%rbx
%rbp

copies p's stack pointer
into ps PCB (pointed to
by address in rdi)

‘/’érsp,(%rdi)<———|

%rsi, %rsp +——

in rsi) into CPU's

copies g's KSP (stored
stack pointer register

Upon return
from ctx_switch
PC register is

loaded with g's
saved PC!

q's krnel sfac

gs PC, SP, PSW
(user mode)

§ 45 select registers

(user mode)

yield() stack frame }

z (contains return KPC)

Stack HW 7} unning |

Back to Yield()

(but with g running!)

q's krnel s’rc

g

‘ gs PC, SP, PSW ’l
: (user mode) |

’/" s select registers §
| (user mode)

' yield() stack frame 1}
 (contains return KPC) ,

next;

I struct pcb *current, *

t void yield()§ -f
' assert(current->state == RUNNING);'
current->state = READY; ‘
readyQueue.add(current);
next = scheduler();

next->state = RUNNING; j
ctx_switch(¤t->sp, next->sp) |
> current = next;

KPC}

q returns to timer interrupt
handler that invoked vield()

~ Stack HW is unning

Back in the Handler

q's krnel s’rc

® We are out the woods — we know 45 PC, SP, PSW
what happens now! -, (user mode)

0 before the handler terminates, it
pops form the kernel stack the ,
user mode registers it saved on | (user mode)
the stack when it was invoked KSP — {

{ 45 select registers

Stack HW i unning

Back in the Handler

q's krnel s’rc

® We are out the woods — we know 45 PC, SP, PSW

what happens now! (user mode)

o before the handler terminates, it KSP —>
pops form the kernel stack the !
user mode registers it saved on
the stack when it was invoked

o RETURN_FROM_INTERRUPT!

» HW pops the save d values of
PC, SP, and PSW to the
appropriate registers

~ Stack HW is unning
GGG

Back in the Handler

q ‘s kernel stack

® We are out the woods — we know
what happens now!

0 before the handler terminates, it
pops form the kernel stack the
user mode registers it saved on
the stack when it was invoked

o RETURN_FROM_INTERRUPT!

» HW pops the save d values of
PC, SP, and PSW to the
appropriate registers

~ Stack HW is unning
GGG

KSP —

"
A
i
1

PC, SP, PSW
| (user mode) §

':‘ Select registers J
| (user mode)

fl Entries added to |
| the k-stack
d while executing §

; in the kernel

All registers
(kernel mode)

The "Hybernated”
rocess p

@ PCB contains address of the
base of ps kernel stack

@ Kernel stack stores

D ps context when it was
running in user mode

O the content of all p's registers
when it was running in kernel
mode, before being suspended,
including the value of the PC it

will get back to when resumed

Anybody there?

@ What if no process is READY?
o scheduler() would return NULL — aargh!

@ No panic on the Titanic:

o OS always runs a low priority process, in an
infinite loop executing the HLT instruction

> halts CPU until next interrupt

o Interrupt handler executes yield() if some other
process is put on the Ready queue

Three Flavors of
Context Switching

@ Interruptf: from user to kernel space
o on system call, exception, or interrupt

o0 Stack switch: Py user stack — Px Kernel stack

@ Yield: between two processes, inside kernel
o from one PCB/interrupt stack to another
o Stack switch: Px kernel stack —Py kernel stack

@ Return from interrupt: from kernel to user space
o with the homonymous instruction
o Stack switch: Px kernel stack — Px user stack

Switching between
Processes

Process 1 Process 2

1. Save Process 1 user registers

2. Save Process 1 kernel registers
and restore Process 2 kernel
registers

return 3. Restore Process 2 user registers
from .

} scheduler selects interrupt
by ready process §

System Calls to
Create a New Process

@ Must, implicitly or explicitly, specify the initial
state of every OS resource belonging fo the new
process.

® Windows

o CreateProcess(...);

@ Unix (Linux)

o fork() + exec(...)

CreateProcess (Simplified)

if (!CreateProcess(

NULL,
argvll],
NULL,
NULL,
FALSE,
O,
NULL,
NULL,
&esi,
&pi)

)

[Windows]

// No module name (use command line)
// Command line
// Process handle not inheritable
// Thread handle not inheritable
// Set handle inheritance to FALSE
// No creation flags
// Use parent's environment block
// Use parent's starting directory
// Pointer to STARTUPINFO structure
// Ptr to PROCESS_INFORMATION structure

fork (actual form)

process identifier

int pid = fork();

.but needs exec(...)

[Unix]

Kernel Actions to
Create a Process

@ fork()
o adllocate ProcessID
D initialize PCB
0 create and initialize new address space

» identical to the one of the caller

» returns twice, once to the parent and once to the child,
but with different values (childs pid and O, respectively)

o inform scheduler new process is READY

@ exec(program, arguments)

o load program into address space

o copy arguments into address spaces memory

o initialize h/w context to start execution at ““start”

Creating and managing
processes

Create a child process as a clone of the current process. Return to both
parent and child. Return childs pid to parent process; return O to child

Run application prog in the current process with the specified args (replacing
any code and data that was present in process)

Pause unftil a child process has exited

Current process is complete and should be garbage collected.

Send an signal (= interrupt) of a specified type to a process
(a bit of an overdramatic misnomer...)

Fork in action

Process 13
Program A
‘oc | | pid = fork(;
SR if (pid==0)
= exec(B);
pid else
? wait(&status);
NS

Fork in action

Process 13
Program A

Process 13
Program A
Ty
'~ pid = fork(); pC
if (pid==0) Beics”
exec(B); b
else pid
wait(&status); A
N
7)
PC
N
ST

e
o

pid = fork();
—if (pid==0)
exec(B);
else
wait(&status);

Process 14
Program B

[o

- pid = fork();
: ifﬁﬁ"iuﬁgié)
exsRY:
else
wait(&status);

Fork in action

Process 13
Program A
- pidi fark () fiec.
if (pid==0) okl
exec(B); b
else pid
wait(&status); A
N

Process 13
Program A

pid = fork();
if (pid==0)
exec(B);
else
 wait(&status);

Process 14
Program B

— main() {

return;

P

Status
0]

calls exit(0)

Fork in action

#include <stdio.h>
#include <unistd.h>

int main() {

int child_pid = fork();

if (child_pid == 0) { // child process
printf("I am process %d.. I mean, process %d\n”, childpid, getpid());
return O;

1 else { // parent process
printf("I am %d the parent of process %d\n", getpid(), child_pid);
return O;

;

Possible outputs?

