System calls

® Programming interface to the services
the OS provides:

0 read input/write to screen

o create/read/write/delete files
O create new processes
send/receive network packets
get the time / set alarms

terminate current process

O 0O Ee

The SKinny

Web Servers
@ Simple and powerful - Compiel
interface allows \, Databases

separation of concern

Word Processing /

\ Web Browsers Email |
o Eases innovation in Y ave s averang

o v e Mueh care spent in
user space and HW { Portable OS Library§

keeping interface secure

@ “Narrow waist" makes it 0 e.g., parameters first

copied to kernel space,
then checked

> fo prevent user program
: i from changing them
o Internet IP layer also / x86 ARM PowerPC Y after they are checked!

o highly portable

o robust (small attack
surface)

/

offers a skinny inferface! /' 1ombps/100Mbps/1Gbps Ethernet
1802.11 a/b/g/n SCSI

Graphics accellerafors | ~p screens

Executing a System Call

@ Process:
o Calls system call function in library
o Places arguments in registers and/or pushes them onto user stack
o Places syscall type in a dedicated register

o Executes syscall machine instruction

@ Kernel
o Executfes syscall interrupt handler
o Places result in dedicated register
o Executes RETURN_FROM_INTERRUPT

® Process:
o Executes RETURN_FROM_FUNCTION

Executing read System Call

int main(arge, argv) {

UPC = - read(fd, buffer, nbytes)

} ? stack frame

for main()
USP

f | kernel {
¥ stack §

user space

kernel space

UPC: user program counter KPC: kernel program counter
USP: user stack pointer

KSP: kernel stack pointer
note: kernel stack is empty while user process running

Executing read System Call

int main(arge, argv) {

¢ = read(fd, buffer, nbytes)
UPC —

} ¥ stack frame
' for main()
_read: UsP
mov READ, %R0
syscall
return
i kernel
¥ stack }
user space B e]

kernel space

UPC: user program counter KPC: kernel program counter
USP: user stack pointer

KSP: kernel stack pointer
note: kernel stack is empty while user process running

Executing read System Call

int main(arge, argv) {

}

_read:
mov READ, %R0

syscall . UPC
return

user space

kernel space

UPC: user program counter
USP: user stack pointer
KSP: kernel stack pointer

stack frame
for main()

stack frame
for _read

kernel 3§
~ stack 3

KPC: kernel program counter

note: kernel stack is empty while user process running

Executing read System Call

int main(arge, argv) {

} o e ¥ stack frame
e for main()
_read: | tack F
mov READ, %R0 ‘ SF“C ‘”“”;e
syscall | ohs <
return Up C U SP A
kernel {
stack §
user Sspace < —
Kernel space HandleIntrSyscall:
push %Rn <
i;ush %R1
call _ handleSyscall
pop %R1
i;op %Rn

return_from_interrupt

Executing read System Call

int main(arge, argv) {

} o e ¥ stack frame
e for main()
_read: | tack F
mov READ, %R0 ‘ SF“C ‘”“”;e
syscall | ohs <
return Up C U SP A
kernel {
stack §
user Sspace < —
Kernel space HandleIntrSyscall:
push %Rn <
i;ush %R1
call _ handleSyscall
pop %R1
i;op %Rn

return_from_interrupt

Executing read System Call

int main(arge, argv) { 5 p s

‘c;.= rea,d((l_?id_,_t_)}lffer, nbytes) W . . Fa%
: v Rt Slurn e, | Sheick feans saved registers
for main()
T READ, %R0 ‘ s::,k i;a:;e
e < UPG I EUSP i

kernel 3§
~ stack 3

user space

Kernel s pace HandleIntrSyscall:
push %Rn

push %R1 <- KP@
call _ handleSyscall

pop %R1

pop %Rn
return_from_interrupt

Executing read System Call

int main(arge, argv) {

USP, UPC, y
PSwW

saved registers

kernel 3§
~ stack 3

int handleSyscall(int type) {
switch (type) {

} o 9, stack frame
for main()
_read: T
mov READ, %R0 SFGC ran;e
syscall or _rea
return UPC USP
user space
kernel s pace HandleIntrSyscall:
push %Rn
i;ush %R1
call _ handleSyscall K P C

pop %R1

pop %Rn
return_from_interrupt

case READ: ...
}

Executing read System Call

int main(arge, argv) {

USP, UPC, y

C= Pea,d((fd, buffer, nbytes) g- _ pPsSw
} i Shurn o 7 etk frdrne saved registers
for main() | .»¥ stack frame for
read: l |
g stack frame | ¥ handleSyscall()
syscall for _read
return ; UPC USP
kernel {
stack §
user space el
kernel space HandleIntrSyscall:
push %Rn
i -+ |int handleSyscall(int type){
pus (o] & 3
call _handleSyscall_ return address .- ' 32781;0;1 Egzsge) {
pop %R1 } o oo KPC
pop %Rn }
return_from_interrupt

What if read needs
to block?

@ read may need to block if
o It reads from a terminal
o It reads from disk, and block is not in cache
o It reads from a remote file server

We should run another process!

How to run
multiple processes

The Problem

@ Say (for simplicity) we have a single core CPU
@ A process physically runs on the CPU

@ Yet each process somehow has its own
o Registers
o Memory
o I/0 Resources

@ Need to multiplex/schedule to create virtual
CPUs for each process

Our friend, the

Process Control Block

@ A per-process data structure held by OS, with

a

O 0O OW.0° “Fis el S

a

location in memory (page table)
location of executable on disk

id of user executing this process (uid)
process identifier (pid)

process status (running, waiting, etc.)
scheduling info

kernel stack

saved kernel SP (when process is not running)
» points info kernel stack

» kernel stack contains saved registers (from user mode) and
kernel call stack for this process

...and more

Process Life Cycle

(v

Process Life Cycle

(v

PCB: being created
Registers: uninitialized

109

Process Life Cycle

) Admitted to
the Ready
queue

PCB: being created
Registers: uninitialized

110

Process Life Cycle

Admitted to
the Ready
queue

PCB: on the Ready queue
Registers: pushed by kernel

code onto kernel stack

111

Process Life Cycle

Admitted to
the Ready
queue

PCB: currently executing
Registers: popped from

kernel stack into CPU

112

Process Life Cycle

Admitted to
the Ready
queue

PCB: on Ready queue
Registers: pushed onto kernel

stack (SP saved in PCB)

113

Process Life Cycle

Admitted to
the Ready
queue

PCB: currently executing
Registers: SP restored from

PCB; others restored from stack

114

Process Life Cycle

Admitted to
the Ready
queue

blocking call
e.g., read(), wait()

PCB: on specific waiting queue
(I/0 device, lock, etc.)
Registers: on kernel stack

~ Waiting |

115
LIS

Process Life Cycle

Admitted to
the Ready

Dispatch ¥
queue ’
blocking call - blocking call
completion e.g., read(), wait()

PCB: on Ready queue
Registers: on kernel stack

116
LIS

Process Life Cycle

Admitted to

the Ready
queue
blocking call - blocking call
completion e.g., read(), wait()

PCB: currently executing
Registers: restored from
PCB (SP) and kernel stack
into CPU 117

Process Life Cycle

Admitted to
the Ready
queue

ot s

Dispatch 7

done
exit()

blocking call -
completion

blocking call
e.g., read(), wait()

PCB: on Finished queue,
ultimately deleted
Registers: no longer needed

118
LIS

Invariants
to keep in mind

@ At most one process/core running at any time

@ When CPU in user mode, current process is RUNNING and
its kernel stack is empty

@ If process is RUNNING

o its PCB not on any queue
o it is not necessarily in USER mode

@ If process is READY or WAITING
o its registers are saved at the top of its kernel/interrupt stack

o its PCB is either
» on the READY queue (if READY)
> on some WAIT queue (if WAITING)

@ If process is a ZOMBIE
o its PCB is on FINISHED queue

Cleaning up Zombies

@ Process cannot clean up itself

o hard to clean up and switch without a stack!

@ Process can be cleaned up

0 by some other process, checking for zombies
before returning to RUNNING state

0 or by parent which waits for it :

@

> but what if parent turns info a zombie first? P

(][N

o or by a dedicated “"reaper” process

@ Linux uses a combination
o if alive, parent cleans up child that it is waiting for

o if parent is dead, child process is inherited by the
initial process, which is continually waiting

Process Life Cycle

Admitted to
the Ready

Dispatch 7

queue
done
exit()
blocking call blocking call
completion e.g., read(), wait()

121

How to Yield/Wait?

@ Must switch the "CPU state” (the context)
captured in its registers and PSW

@ Must switch from executing the current
process to executing some other READY process

0 Current process: RUNNING — READY
0 Next process: READY — RUNNING

1. Save kernel registers of Current on its kernel stack
2. Save Kernel SP of Current in its PCB

3. Restore kernel SP of Next from its PCB

4. Restore Kernel registers of Next from its kernel stack

