
II. Memory Isolation

Implement a function mapping

0xA486D4

0x5E3A07

Virtual Physical

Enables:

Isolation

Relocation

Data sharing

Multiplexing

Non-contiguity

〈pid, virtual address〉 physical address

pi

Step 2: Address Translation

into

Isolation
At all times, functions used by different processes
map to disjoint ranges — aka “Stay in your room!”

pi

pj

Relocation

The range of the function used by a process
can change over time

pi

Relocation

The range of the function used by a process
can change over time — “Move to a new room!”

pi

Data Sharing
Map different virtual addresses of distinct
processes to the same physical address —
(“Share the kitchen”)

pi

pj
0x5E3A07

0x4D26A

0x19AF3

Data Sharing
Map different virtual addresses of distinct
processes to the same physical address —
(“Share the kitchen”)

pi

pj
5e3a07

Shared

memory

Multiplexing
Create illusion of almost infinite memory by
changing domain (set of virtual addresses) that
maps to a given range of physical addresses —
ever lived in a studio?

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

More Multiplexing

At different times, different processes can map
part of their virtual address space into the
 same physical memory — (change tenants)

pi

pj

More Multiplexing

pi

pj

At different times, different processes can map
part of their virtual address space into the
 same physical memory — (change tenants)

(Non) Contiguity

pi

Contiguous virtual addresses can be mapped
to non-contiguous physical addresses…

0x00A0
0x00A4 0x04D0

0xFDC0

(Non) Contiguity

…and non-contiguous virtual addresses can
be mapped to contiguous physical addresses

0xFFA4

0x00B0

0xFDB0
0xFDB4pi

A simple mapping mechanism:
Base & Bound

Hardware

to the rescue!

A simple mapping mechanism:
Base & Bound

CPU

Bound

Register

Base

Register

1500

1000

0

MAXsys

500 1000

p’s physical
address
space

≤ +yes

no

Memory

Exception

Logical

addresses

Physical

addresses

More
sophisticated

mechanisms

to come!

On Base & Limit
Contiguous Allocation: contiguous virtual
addresses are mapped to contiguous physical
addresses

Isolation is easy, but sharing is hard

Say I have many copies of Safari open…

I may want them to share the same code, or
even the same global variables

And there is more…

Hard to relocate

Addresses are absolute and may be stored in
registers or on the stack (a return address)

Supporting

Dual-Mode Operation

Privileged Instructions

Memory Isolation

Timer* Interrupts

Questions?

Supporting

Dual-Mode Operation

Privileged Instructions

Memory Isolation

Timer* Interrupts

Giving control back

to the

Hardware

to the rescue!

III. Timer Interrupts

Hardware timer

can be set to expire after specified delay
(time or instructions)

when it does, control is passed back to the
kernel

Other interrupts (e.g., due to I/O completion)
also give back control to kernel

Interrupt Management

Interrupt controllers implements interrupt priorities:

Interrupts include descriptor of interrupting device

Priority selector circuit examines all interrupting devices,
reports highest level to the CPU

Controller can also buffer interrupts coming from different
devices

interrupt
controllerinterrupt

Interrupt Management

Maskable interrupts

can be turned off by the CPU for critical processing

interrupt
controllerinterrupt

Nonmaskable interrupts

indicate serious errors (power out warning,
unrecoverable memory error, etc.

 System calls

user program requests
OS service

synchronous/non-
maskable

Types of Interrupts

Interrupts

HW device requires OS service

timer, I/O device, interprocessor

asynchronous/maskable

Exceptions

process missteps (e.g. division by zero)

attempt to perform a privileged instruction

sometime on purpose! (breakpoints)

synchronous/non-maskable

Interrupt Handling

Two objectives

handle the interrupt and remove the cause

restore what was running before the interrupt

kernel may modify saved state on purpose

Two “actors” in handling the interrupt

the hardware goes first

the kernel code takes control by running the
interrupt handler

