
Now that we have processes…
A First Cut at the API

Create

causes the OS to create a new process

Destroy

forcefully terminates a process

Wait (for the process to end)

Other controls

e.g. to suspend or resume the process

Status

running? suspended? blocked? for how long?

So, where are we?
Buggy apps can crash
other apps

Buggy apps can crash OS

Buggy apps can hog all
resources

Malicious apps can violate
privacy of other apps

App 1 App 2 App 3

Operating System

Reading and writing memory,
managing resources, accessing I/O...

OS must be able to isolate apps from one another

Buggy apps can crash
other apps

Buggy apps can crash OS

Buggy apps can hog all
resources

Malicious apps can violate
privacy of other apps

App 1 App 2 App 3

Operating System

Reading and writing memory,
managing resources, accessing I/O...

Malicious apps can
change the OS

So, where are we?

OS must be able to isolate
itself from other processes!

Fine.

But now that we have successfully isolated each process
from everything, how do they get anything done?

App 1 App 2 App 3

Cooperate/communicate

with each other?

I/O? R &
 W

memory
?

The Process, Refined
A running program with
restricted rights

trust program with
performing harmless, local
actions.

for the rest, “adult
supervision”!

The mechanism that enforces
the restriction must not
hinder functionality

still efficient use of hardware

enable safe communication

App 1

OS

Hardware

The Process, Refined

App 1

OS

Hardware

A running program with
restricted rights

trust program with
performing harmless, local
actions.

for the rest, “adult
supervision”!

The mechanism that enforces
the restriction must not
hinder functionality

still efficient use of hardware

enable safe communication

Quick aside:

Mechanism vs Policy
Mechanism

enables a functionality

Policy

determines how that functionality
will be used

Mechanisms should not determine policies!

Enters the

OS Kernel

A subset of the OS charged with special rights
and responsibilities

Kernel is trusted with full access to all
hardware capability

All other software (OS or applications) is untrusted

Untrusted

Trusted

Applications
Rest of the OS

Kernel

How can the OS
Enforce Restricted Rights?

Easy: kernel interprets and checks each
instruction from apps (and untrusted OS)

App 1

Hardware

slow

many instructions are safe:
do we really need to
involve the kernel?

Mechanism: Dual Mode Operation
hardware to the rescue: use a
bit to enable two modes of
execution:

in user mode, processor only
executes a limited (safe) set of
instructions (checked by processor)

in kernel mode, no such restriction

only OS kernel trusted to run in
kernel mode

App 1

Hardware

How can the OS
Enforce Restricted Rights?

To support dual-mode operation:

Privileged instructions

in user mode, no way to execute potentially unsafe
instructions. HW checks each instruction: if privileged,
control is passed to the kernel.

Memory isolation

in user mode, memory accesses outside a process’
memory region are prohibited

Timer* interrupts

ensure kernel will periodically regain control from
running process

Amongst our weaponry are
such diverse elements as…

*there’s more of them!!

I. Privileged instructions

Set mode bit

I/O ops

Memory management ops

Disable interrupts

Set timers

Halt the processor

I. Privileged instructions
But how can an app do I/O then?

it can politely ask the kernel
to perform it on its behalf

system calls cause the processor to
transition from user to kernel mode, from
which they execute code specified by the
OS (kernel code) and stored at specific
memory locations that depend on the
system call

Pre
tty

ple
ase

?

Crossing the line
user process

user process executing invokes system call return from system call

execute system call

 trap

mode bit := 0

 mode bit := 1

return

mode bit = 1

mode bit = 0

I. Privileged instructions
But how can an app do I/O then?

it can politely ask the kernel
to perform it on its behalf via a system call

it can force the issue by executing a
privileged instruction while in user mode
(naughty naughty…)

This causes a processor exception….

...which abruptly passes control to the kernel
at specific locations (exception dependent)
where appropriate handlers are invoked

these locations are specified in a so-called
interrupt vector

More

aboout this

coming up!

I. Privileged instructions

Set mode bit

I/O ops

Memory management ops

Disable interrupts

Set timers

Halt the processor

Set location of interrupt vector

Supporting

Dual-Mode Operation

Privileged Instructions

Memory Isolation

Timer* Interrupts

Questions?

Supporting

Dual-Mode Operation

Privileged Instructions

Memory Isolation

Timer* Interrupts

II. Memory Isolation

Physical address space: set of memory
addresses supported by hardware

Virtual address space: set of memory
addresses that process can name

CPU works with virtual addresses

Kernel is typically mapped in the Virtual
address space of every process

but that portion of the address space
can only be accessed in kernel mode

Virtual
address
space

Stack

Code

Initialized data

Heap

DLL’s

mapped segments

Step 1: Virtualize Memory

