
Welcome!

Partner finding

Searching for a study buddy
or partner? Looking to meet a
new friend? Are you taking CS,
INFO, or ORIE classes?

September 1
4-6 pm

Upson 142
If so, the CIS Partner

Finding Social is for you!
This is the PERFECT
opportunity to find a
partner and meet other

students in your classes!

Common systems
challenges

Emergent properties

Propagation of effects

Incommensurate scaling

Trade-offs

Propagation of effects:
fighting malaria

WHO sprayed villages in N. Borneo with DDT

Wiped out mosquitos, but…

Roaches collected DDT in tissue

Lizard ate roaches, and became slower

Easy target for cats

DDT caused cats to die

Forest rats moved into villages

Rats carried the bacillus of the plague!

Incommensurate scaling
As the system increases in size or

speed, not all components can manage
the scale, and things break down

10x higher than Jack!

but also 10x wider and thicker!

About 1000x Jack’s weight — but the
cross section of the Giant’s bones
was only 100x Jack’s

A human thigh bone breaks at about
10x human weight

The giant would have broken his thighs
every time he was taking a step!

noted in “On being the right size”
J.B.S. Haldane

A pawn vs better position in chess

Inevitable Trade-offs

Speed vs power in processors

Bandwidth vs computation in compression

Space vs time almost everywhere

…

How to Manage
Complexity

Modularity

Good modularity minimizes
connections between components

Abstraction

Separate interface from
internals; separate specification
from implementation

Hierarchy/Layering

Constrain interactions so they
are easier to understand

User Programs

User

Operator Console

Memory

Management

I/O Management

CPU Scheduling

and Semaphores

Hardware

0

1
2
3
4
5 (not implemented)

EWD 196, 1965

THE Operating system

What is an OS?

An Operating System implements a virtual
machine whose interface is more convenient*
that the raw hardware interface

Operating System

Application Application Application Application Application

Hardware

OS Interface

Physical Machine

Interface

* easier to use, simpler to code, more reliable, more secure...

VM

Interface

Fine. But what is an OS?

A collection of software
components that run directly on
and manage the hardware and

provide services to the user and to
application programs

Referee

Manages shared resources:
CPU, memory, disks, networks,
displays, cameras…

Illusionist

Clean, easy-to-use
abstractions of physical
resources

Look! Infinite memory! Your
own private processor!

Glue

Offers a set of common
services (e.g., UI routines)

OS wears many hats

OS as Referee
Resource allocation

Multiple concurrent tasks… who gets how much?

Isolation

A faulty app should not disrupt other apps or OS

Communication/Coordination

Apps need to coordinate and share state

OS as Illusionist

Virtualization

Processor, memory,
screen space, disk,
network

Appearance of resources not physically present

Operating System

Application Application Application Application Application

Hardware

VM

Interface

OS as Illusionist

Virtualization

Processor, memory,
screen space, disk,
network

The entire computer

Fooling the OS itself!

Eases debugging,
portability, isolation

Appearance of resources not physically present

Operating System

Application Application Application Application Application

Hardware

VM

Interface

VMM

Application Application Application Application Application

Hardware

Guest OS 1 Guest OS 2
VM

Interface
VM

Interface

Appearance of resources not physically present

Atomic operations

HW guarantees atomicity at the word level…

What happens during concurrent updates to complex data
structures?

What is a computer crashes while writing a file block?

At the hardware level, packets are lost

Reliable communication channels

OS as Illusionist

OS as Glue

Offers standard services to simplify app design
and facilitate sharing

Send/Receive byte streams

Read/Write files

Pass messages

Share memory

UI

Decouples HW and app development

We need all the help

we can get…

Linux	2.2.0

Mars	Curiosity	Rover

Firefox

Android

Linux	3.1	(2012)

Windows	7

MicrosoA	Office	2013

Windows	Vista

Facebook

Mac	OS	X	"Tiger"

Modern	Car

Mouse	Chromosome	Base	Pairs

0 30 60 90 120

Millions of lines of code

We need all the help

we can get…

Linux	2.2.0

Mars	Curiosity	Rover

Firefox

Android

Linux	3.1	(2012)

Windows	7

MicrosoA	Office	2013

Windows	Vista

Facebook

Mac	OS	X	"Tiger"

Modern	Car

Mouse	Chromosome	Base	Pairs

0 30 60 90 120

Millions of lines of code

New versions are

usually much larger

than older versions

We need all the help

we can get…

Linux	2.2.0

Mars	Curiosity	Rover

Firefox

Android

Linux	3.1	(2012)

Windows	7

MicrosoA	Office	2013

Windows	Vista

Facebook

Mac	OS	X	"Tiger"

Modern	Car

Mouse	Chromosome	Base	Pairs

0 30 60 90 120

Millions of lines of code

New versions are

usually much larger

than older versions

Modern systems
are really complex!

The Road Ahead

Virtualizing the CPU

Virtualizing Memory

Persistence

Process Abstraction and API

Threads and Concurrency

Scheduling

Virtual Memory

Paging

I/O Devices

File Systems

Harmony

Your Automated Concurrency Tutor

Issues in OS Design
Structure: how is the OS organized?

Concurrency: how are parallel activities created
and controlled?

Sharing: how are resources shared?

Protection: how are distrusting parties protected
from each other?

Naming: how are resources named by users?

Security: how to authenticate, authorize, and
ensure privacy?

Performance: how to make it fast?

More Issues in OS
Design

Reliability: how do we deal with failures??

Portability: how to write once, run anywhere?

Extensibility: how do we add new features?

Communication: how do we exchange information?

Scale: what happens as demands increase?

Persistence: how do we make information outlast
the processes that created it?

Accounting: who pays the bill and how do we
control resource usage?

The Process
Our first abstraction

(Chapters 2-6)

What is a process for?

It provides a program with the ecosytem it
needs to run

It is how a program experiences the machine it
is running on:

Think “The Matrix”

When a program dreams of a computer, it
dreams of a process!

From Program to Process

To make the program’s code and data come alive

need a CPU

need memory

for data, code, stack, heap

need registers

PC, SP, regular registers

need access to I/O

list of open files

You’ll Never Walk Alone

Machines run (at least conceptually) multiple
programs concurrently (which the OS must manage)

how should the machine’s resources be mapped to
these programs?

OS as a referee…

You’ll Never Walk Alone

Machines run (at least conceptually) multiple
programs concurrently (which the OS must manage)

how should the machine’s resources be mapped to
these programs?

Enter the illusionist!

give every program the illusion of running
on a private CPU

which appears slower than the HW machine’s

give every program the illusion of running
on a private memory

which may appear larger (??) than the machine’s

Virtualize

the CPU}

Virtualize

memory}

So, what does a process
offer programs?

The illusion of a dedicated CPU -
that the OS must somehow “spin”
baes on the physical processor

The illusion of dedicated memory -
the process’ address space - that
the OS must somehow “spin” based
on physical memory

A way to access I/O

A chance to live!

The OS predicament

Multiple programs may want to run concurrently

OS must support multiple processes

How should it manage the HW resources at its
disposal?

must multiplex!

could multiplex in space

What would it mean for Memory? For the CPU?

could multiplex in time

What would it mean for Memory? For the CPU?

How to keep track of it all?

Process Magement

by the OS

PC
Stack Ptr
Registers

PID
UID

Priority
List of open files
Process status

Kernel stack ptr
…

Process Control Block (PCB)
A per-process data structure held
by the OS

Stores three types of information

Process identification

Process state (registers, PC, SP, MM Info…)

to seamlessly suspend and restart process

Process control

scheduling status, priority, CPU time used

PCB

