Security

CS 4410
Operating Systems
Security in Networking

- Network Vulnerabilities
- Secure Sockets (Encryption)
- Secure Naming (Certificates)
What Could Go Wrong?

Steps to send message:
1. Use DNS to find Bob’s IP
2. Start TCP session with that IP address
3. Put message into TCP packet(s)
4. Route them over network

Alice
IP: 132.244.39.128
Secret message for Bob

Bob
www.bob.com
IP: 128.84.139.12

Eve
IP: 116.66.161.33
What Could Go Wrong?

Eve can:
- Intercept Alice’s DNS query, say that www.bob.com is at her IP
 - Impersonate or compromise a DNS server or Alice’s local nameserver
 - Alice will send the message to 116.66.161.33 thinking it’s Bob
- Tell router R4 that her IP address is 128.84.139.12
 - Alice will send the message to Bob’s IP address, but R4 will forward the packets to Eve
 - Put a device in promiscuous mode on the network, read all packets addressed to Bob
 - Bob gets the message, but Eve gets to read it too
Communicating Securely

• Verify that the recipient is who they say they are (Authentication)
• Prevent anyone other than intended recipient from reading the message (Authorization)
First Step: Encrypt the Message

- Symmetric-Key Cryptography: Alice and Bob have a shared secret key
- **Pro**: Eve can’t read the message even if she intercepts it
- **Con**: How does Alice share the key with Bob? Send it over the network?
Encrypting the Message

- Public-Key Cryptography
 - Bob tells everyone his public key (PK_B), Alice uses it to encrypt the message for him.
 - Only Bob knows his private key (SK_B), which is necessary to decrypt the message.
Encrypting the Message

- **Public-Key Cryptography**
- **Pro**: No need to share a secret over the network
- **Con**: Public-key encryption (RSA) is **much** slower than symmetric encryption (AES)
Session Keys

• Combine public-key and symmetric encryption to get benefits of both

1. Use public-key encryption to safely send a session key: secret key for a symmetric cipher

2. Use symmetric encryption with the session key for subsequent messages
Session Keys

Alice

Session Key K_{AB1}

PK$_B$

RSA Encrypt

Ciphertext

RSA Decrypt

SK$_B$

Session Key K_{AB1}

Bob

Secret message for Bob

K_{AB1}

AES Encrypt

Ciphertext

AES Decrypt

K_{AB1}

Secret message for Bob
TLS: Transport Layer Security

- Originated with SSL (Secure Sockets Layer), now obsolete
- Runs on TCP connection
- Initial handshake to establish identity of server and create session key
- Subsequent TCP segments have data encrypted with session key
Establishing Identity

• How does Alice learn Bob’s public key?
• What if Eve pretends to be Bob and presents her own public key?
Digital Certificates

- Use a **trusted third party** to provide Bob’s public key
- Pre-distribute or hard-code third party’s public key (easier problem)
- Use digital signatures to ensure Eve can’t impersonate trusted third party
Digital Certificates

• Signed message from trusted party is a certificate proving that this is Bob’s key
• Bob can provide this certificate himself, no need to contact third party
Certificate Authorities

• Trusted party that issues key certificates is a **certificate authority (CA)**
• CA’s job is to verify Bob’s identity, then sign a certificate for his public key
• Public keys for CAs must be manually installed
Certificate Authority Hierarchy

- Small number of hard-coded “root” CAs
 - Just like DNS root servers
- A CA can sign certificates for other CAs
 - Once you know one CA’s public key, you can use it to discover others (just like DNS)
- CA certificate describes what domains this CA can sign keys for

Diagram:
- **Root CA**
 - Public Key: \(PK_R \)
 - Signature with \(PK_R \)
- **Brown CA**
 - Public Key: \(PK_B \)
 - Signature with \(PK_R \)
 - IP: 128.148.32.12
 - Domain: *.brown.edu
- **Cornell CA**
 - Public Key: \(PK_C \)
 - Signature with \(PK_R \)
 - IP: 128.84.139.64
 - Domain: *.cornell.edu
TLS in More Detail

TCP handshake on port 443

Alice
- Validate certificate signature
- Pick random number
- Generate session key from random number

www.bob.com
- IP: 128.84.139.12
- Public Key: PK_B
- CA Signature

Bob
- Generate session key from random number

Random number encrypted with PK_B
- Message encrypted with session key
- Response encrypted with session key