
Networking

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, Kurose, Ross, E. Sirer, R. Van Renesse]

Application Layer

2

Application

Transport

Network

Link

Physical

Several figures in this section come from
“Computer Networking: A Top Down Approach”
by Jim Kurose, Keith Ross

People
• SSN, NetID, Passport #

Internet Hosts, Routers
1. IP address (32 bit), 151.101.117.67
- For now, 32-bit descriptor, like a phone number

- Longer addresses in the works…

- Assigned to hosts by their internet service providers

- Not physical: does not identify a single node, can swap machines and
reuse the same IP address

- Not entirely virtual: determines how packets get to you, changes when
you change your ISP

2. Virtual: “name” www.cnn.com
- Used by humans (no one wants to remember a bunch of #s)

How to convert hostname to IP address?

Naming

3

Distributed, Hierarchical Database
• Application-Layer Protocol: hosts & name servers communicate to

resolve names
• Names are separated by dots into components

Not to be confused with dots in IP addresses (in which the order of least significant
to most significant is reversed)

• Components resolved from right to left
• All siblings must have unique names
• Lookup occurs from the top down

Domain Name System (DNS)

4

Root DNS Servers

.com DNS servers .org DNS servers .edu DNS servers

cornell.edu
DNS servers

utexas.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

… …

Contacted by local name server that cannot resolve name
• owned by Internet Corporation for Assigned Names & Numbers

(ICANN)
• contacts authoritative name server if name mapping not known
• gets mapping
• returns mapping to local name server

DNS: root name servers

5

a. Verisign, Los Angeles CA

(5 other sites)

b. USC-ISI Marina del Rey, CA

l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA

f. Internet Software C.

Palo Alto, CA

(and 48 other sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo (5 other sites)

c. Cogent, Herndon, VA (5 other sites)

d. U Maryland College Park, MD

h. ARL Aberdeen, MD

j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,

OH (5 other sites)

13 root name “servers”
worldwide

1. the client asks its local nameserver
2. the local nameserver asks one of the root nameservers
3. the root nameserver replies with the address of the

authoritative nameserver
4. the server then queries that nameserver
5. repeat until host is reached, cache result.

Example: Client wants IP addr of www.amazon.com

1. Queries root server to find com DNS server
2. Queries .com DNS server to get amazon.com DNS server
3. Queries amazon.com DNS server to get IP address for

www.amazon.com

DNS Lookup

6

Simple, hierarchical namespace works well

- Can name anything

- Can alias hosts

- Can cache results

- Can share names (replicate web servers by having 1
name correspond to many IP addresses)

Q: Why not centralize?

- Single point of failure

- Traffic volume

- Distant Centralized Database

- Maintenance
A: Does not scale!
What about security? (don’t ask!)

DNS Services

7

• Network-aware applications
• Clients & Servers
• Peer-to-Peer

Application Layer

8

application

transport

network

link

physical

application

transport

network

link

physical

“Door” between application process and end-
end-transport protocol
Sending process:
• shoves message out door
• relies on transport infrastructure on other side of

door to deliver message to socket at receiving
process

Sockets

9

internet

controlled
by OS

controlled by
app developerprocess

socket
process

Two socket types for two transport services:
• UDP: unreliable datagram
• TCP: reliable, byte stream-oriented

Host could be running many network
applications at once. Distinguish them by
binding the socket to a port number:
• 16 bit unsigned number
• 0-1023 are well-known

(web server = 80, mail = 25, telnet = 23)
• the rest are up for grabs

Socket programming

10

1. Client reads a line of characters (data) from
its keyboard and sends data to server

2. Server receives the data and converts
characters to uppercase

3. Server sends modified data to client
4. Client receives modified data and displays

line on its screen

Application Example

11

No “connection” between client & server
• no handshaking before sending data
• Sender: explicitly attaches destination IP

address & port # to each packet
• Receiver: extracts sender IP address and

port # from received packet

Data may be lost, received out-of-order

Application viewpoint: UDP provides
unreliable transfer of groups of bytes
(“datagrams”) between client and server

Socket programming with UDP

12

Client/server socket interaction: UDP

13

create socket:

create serversocket, bind to port x

Server (running on serverIP) Client

create clientsocket

create message

send message to (serverIP, port x)
via clientsocket

read data (and clientAddr)
from serversocket

send modified data to clientAddr
via serversocket receive message (and serverAddr)

from clientsocket

modify data

close clientsocket

import socket #include Python’s socket library
serverName = ‘servername’
serverPort = 12000

#create UPD socket
clientSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

#get user input
message = input('Input lowercase sentence: ')

send with server name + port
clientSocket.sendto(message.encode(), (serverName, serverPort))

get reply from socket and print it
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print(modifiedMessage.decode())

clientSocket.close()

Python UDP Client

14

Python UDP Server

15

import socket #include Python’s socket library
serverPort = 12000

#create UPD socket & bind to local port 12000
serverSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print("The server is ready to receive")

while True:
Read from serverSocket into message,
getting client’s address (client IP and port)
message, clientAddress = serverSocket.recvfrom(2048)
print("received message: "+message.decode())
modifiedMsg = message.decode().upper()
print("sending back to client")

send uppercase string back to client
serverSocket.sendto(modifiedMsg.encode(), clientAddress)

Client must contact server

Server:

• already running

• server already created

“welcoming socket”

Client:

• Creates TCP socket w/ IP address,

port # of server

• Client TCP establishes connection

to server TCP

Socket programming w/ TCP

16

• when contacted by client,
server TCP creates new socket
to communicate with that
particular client
• allows server to talk with

multiple clients
• source port #s used to

distinguish clients

Application viewpoint: TCP provides reliable, in-order byte-stream
transfer between client & server

Client/server socket interaction: TCP

17

create socket:

create welcoming serversocket,
bind to port x

Server (running on hostID) Client

create clientsocket
connect to (hostID, port x)

create message

send message via clientsocket
read data from connectionsocket

send modified data to clientAddr
via connectionsocket

receive message from clientsocket

modify data

close clientsocket

in response to connection request,
create connectionsocket

close connectionsocket

import socket #include Python’s socket library
serverName = ‘servername’
serverPort = 12000

#create TCP socket for server on port 12000
clientSocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
clientSocket.connect((serverName,serverPort))

#get user input
message = input('Input lowercase sentence: ')

send (no need for server name + port)
clientSocket.send(message.encode())

get reply from socket and print it
modifiedMessage, serverAddress = clientSocket.recvfrom(1024)
print(modifiedMessage.decode())

clientSocket.close()

Python TCP Client

18

Python TCP Server

19

import socket #include Python’s socket library
serverPort = 12000

#create TCP welcoming socket & bind to server port 12000
serverSocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
serverSocket.bind(('', serverPort))
#server begins listening for incoming TCP requests
serverSocket.listen(1)
print("The server is ready to receive")

while True:
server waits on accept() for incoming requests
new socket created on return
connectionSocket, addr = serverSocket.accept()
message = connectionSocket.recv(1024).decode()
print("received message: "+message)
modifiedMsg = message.upper()

send uppercase string back to client
connectionSocket.send(modifiedMsg.encode())

close connection to this client, but not welcoming socket
connectionSocket.close()

Remote Procedure Call

20

Application

Presentation (ish)

Transport

Network

Link

Physical

Several figures in this section come from
“Distributed Systems: Principles and Paradigms”
by Andrew Tanenbaum & Maarten van Steen

Common model for structuring distributed computation
• Server: program (or collection of programs) that

provide some service, e.g., file service, name service
• may exist on one or more nodes

• Client: a program that uses the service

Typical Pattern:
1. Client first connects to the server: locates it in the

network & establishes a connection
2. Client sends requests: messages that indicate which

service is desired and the parameters
3. Server returns response

Client/Server Paradigm

21

+Very flexible communication
• Want a certain message format? Go for it!

−Problems with messages:
• programmer must worry about message formats
• must be packed and unpacked
• server must decode to determine request
• may require special error handling functions

Pros and Cons of Messages

22

A more natural way to communicate:
• every language supports it
• semantics are well defined and understood
• natural for programmers to use

Idea: Let clients call servers like they do procedures

Procedure Call

23

Goal: design RPC to look like a local PC
• A model for distributed communication
• Uses computer/language support
• 3 components on each side:
• user program (client or server)
• set of stub procedures
• RPC runtime support

Remote Procedure Call (RPC)

24

Birrell & Nelson @ Xerox PARC

“Implementing Remote Procedure Calls” (1984)

Basic idea:
• Server exports a set of procedures
• Client calls these procedures, as if they were local functions

• Message passing details hidden from client & server (like system call
details are hidden in libraries)

How does an RPC work?

26[Tanenbaum & van Steen, Fig 4-6]

(typically blocked on

receive() at first)

RPC Stubs

27

call foo(x,y)

proc foo(a,b)

client

program

Client-side stub:

• Looks (to the client) like a

callable server procedure

• Client program thinks it is

calling the server

call foo

call foo(x,y)

proc foo(a,b)

begin foo...

end foo

server

stub

Server

program

call foo

client

stub

Server-side stub:

• Server program thinks it is

called by the client
• foo actually called by the

server stub

Stubs send

messages to

each other to

make RPC

happen

RPC Call Structure

28

call foo(x,y)

proc foo(a,b) call foo(x,y)

proc foo(a,b)

begin foo...

end foo

Call

(1) calls

local stub fn

(3) sends

msg to remote

node

(6) does

the work!

(5) unpacks

params,

makes call

(4) receives

msg, calls

stub

call foo

send msg

call foo

msg received

(2) builds msg,

calls OS

RPC Return Structure

29

call foo(x,y)

proc foo(a,b) call foo(x,y)

proc foo(a,b)

begin foo...

end foo

Return

client

continues

(3) unpacks

msg, returns

to client

(4) receives msg,

gives to stub

(1) returns

result to stub

(2) packs

result in msg,

calls OS

(3) responds

to original

msg

return

msg received

return

send msg

Example RPC system:

30

Stub compiler
• reads IDL
• produces 2 stub procedures for

each server procedure:
(1) client-side stub
(2) a server-side stub

31

Server writer:
• writes server
• links it with server-

side stubs

Example RPC system:

Server exports its interface:
• identifying itself to a network name server
• telling the local runtime its dispatcher address

Client imports the interface. RPC runtime:
• looks up the server through the name service
• contacts requested server to set up a connection

Import and export are explicit calls in the code

Binding: Connecting Client & Server

32

DCE = Distributed

Computing

Environment

• Parameter Passing
• Failure Cases
• Performance

RPC Concerns

33

Your function call has been secretly replaced

with a remote function call. Is this okay?

Packing parameters into a message packet

• RPC stubs call type-specific procedures to marshal (or
unmarshal) all of the parameters to the call

On Call:
• Client stub marshals parameters into the call packet
• Server stub unmarshals parameters to call server’s fn

On return:
• Server stub marshals return values into return packet
• Client stub unmarshals return values, returns to client

RPC Marshaling

34

Parameter Passing

35[Tanenbaum & van Steen, Fig 4-7]

What could go wrong?

• Parameter Passing
• Data Representation
• Passing Pointers
• Global Variables

• Failure Cases
• Performance

RPC Concerns

36

Data representation?
ASCII vs. Unicode, structure alignment, n-bit
machines, floating-point representations, endian-
ness

→Server program defines interface using an
interface definition language (IDL)

For all client-callable functions, IDL specifies:
• names
• parameters
• types

Data Representation

37

• Forbid pointers? (breaks transparency)
• Have server call client and ask it to modify when

needed (breaks transparency)
• Have stubs replace call-by-reference semantics

with Copy/Restore
• Optimization: if stub knows that a reference is

exclusively input/output copy only on call/return
• Only works for simple arrays & structures

- Union types? YUCK

- Multi-linked structures? YUCK

- Raw pointers? YUCK

Passing Pointers

38

• Parameter Passing
• Failure Cases
• Performance

RPC Concerns

39

Function call failure cases:
• Called fn crashes → so does the caller

RPC Failure cases:
• server fine, client crashes? (orphans)
• client fine, server crashes?
• Client just hangs?
• Stub supports a timeout, error after n tries?
• Client deals w/failure (breaks transparency)

RPC Failure Cases

40

Multiple calls yields the same result

What’s idempotent?
• read block 50

What’s not?
• appending to a file

Aside: Idempotency

41

A calls B. B never responds… Should A resend or not?

2 Possibilities:

(1) B never got the call:
• Resend → B executes the procedure once
• Don’t resend → B executes the procedure zero times

(2) B performed the call then crashed:
• Resend → B executes the procedure twice
• Don’t resend → B executes the procedure once

Can we even promise transparency?

How many times will a function be executed?

42

A calls B. B responds… What does A assume about
how many times the function was executed?

Exactly once:
• system guarantees local semantics
• at best expensive, at worst, impossible

At-least-once:
+ easy: no response? A re-sends
− only works for idempotent functions
− server operations must be stateless

At-most-once:
− requires server to detect duplicate packets
+ works for non-idempotent functions

What semantics will RPC support?

43

• Parameter Passing
• Failure Cases
• Performance
• Remote is not cheap
• Lack of parallelism (on both sides)

• Lack of streaming (for passing data)

RPC Concerns

44

RPC:
• Common model for distributed application

communication
• language support for distributed programming
• relies on a stub compiler & IDL server description
• commonly used, even on a single node, for

communication between applications running in
different address spaces (most RPCs are intra-node!)

“Distributed objects are different from local objects, and
keeping that difference visible will keep the programmer
from forgetting the difference and making mistakes.”
–Jim Waldo+, “A Note on Distributed Computing” (1994)

RPC Concluding Remarks

45

