
Main Memory:
Address Translation

CS 4410
Operating Systems

Physical Reality: different processes/threads share the
same hardware → need to multiplex

• CPU (temporal)

• Memory (spatial)

• Disk and devices (later)

Why worry about memory sharing?

• Complete working state of process and/or kernel is
defined by its data (memory, registers, disk)

• Don’t want different processes to have access to each
other’s memory (protection)

Can’t We All Just Get Along?

2

Isolation
Don’t want distinct process states collided in physical memory
(unintended overlap → chaos)

Sharing
Want option to overlap when desired (for efficiency and
communication)

Virtualization
Want to create the illusion of more resources than exist in
underlying physical system

Utilization
Want to best use of this limited resource

Aspects of Memory Multiplexing

3

A Day in the Life of a Program

4

sum.c

source files

...
0C40023C
21035000
1b80050c
8C048004
21047002
0C400020

...
10201000
21040330
22500102

...

0040 0000

1000 0000

.t
ex

t
.d

a
ta

m
a

in

max

#include <stdio.h>

int max = 10;

int main () {
int i;
int sum = 0;
add(m, &sum);
printf(“%d”,i);
...

}

Compiler
(+ Assembler + Linker)

executable

sum

“It’s alive!”
Loader

stack

text

data

heap

process

0x00000000

pid xxx

0x00400000

0x10000000

SPPC
0xffffffff

max

addi
jal

Logical view of process memory

5

0xffffffff

0x00000000

stack

text

data

heap

Where does this go
in physical memory?

Logical view of process memory

6

0xffffffff

0x00000000

stack

text

data

heap

0xffffffff

0x00000000

stack

text

data

heap

What if we have 2 processes?

First attempt: Base + Bounds

7

0xffff

0x0000

stack

text

data

heap

Stack 0

Text 0

Data 0
Heap 0

Stack 1

Text 1

Data 1
Heap 1

0x00ffffff

0x00ff0000
0x00feffff

0x00fe0000

≤

0xff0000

Base register

0xffff

Bound register

+
yes

no

“Virtual”
addresses

Physical
addressesChanged on

context switch

• Processes use different
amounts of memory

• Processes’ memory needs
change over time

• What happens when
a new process can’t fit
into a contiguous space in
physical memory?

Problems

8

Process 0

Process 1

Process 2

Process 3

Physical
Memory

Process 4

?

External fragmentation!

TERMINOLOGY ALERT:
Page: the data itself
Frame: physical location

Paged Translation

9

stack

text

data

heap

Process
View

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1
Virtual
Page 0

Virtual
Page N

Frame 0

Frame M

No more
external

fragmentation!

Divide:

• Physical memory into fixed-sized blocks called frames

• Logical memory into blocks of same size called pages

Management:

• Keep track of all free frames.

• To run a program with n pages, need to find n free frames and

load program

Notice:

• Logical address space can be noncontiguous!

• Process given frames when/where available

Paging Overview

10

Address Translation, Conceptually

11

• Hardware device

• Maps virtual to physical address (used to access
data)

User Process:

• deals with virtual addresses

• Never sees the physical address

Physical Memory:

• deals with physical addresses

• Never sees the virtual address

Memory Management Unit (MMU)

12

red cube is 255th

byte in page 2.

Where is the red cube
in physical memory?

High-Level Address Translation

13

stack

text

data

heap

Process
View

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1
Page 0

Page N

Frame 0

Frame M

Page number – Upper bits
• Must be translated into a physical frame number

Page offset – Lower bits
• Does not change in translation

For given logical address space 2m and page size 2n

Logical Address Components

14

page number page offset

m - n n

High-Level Address Translation

15

stack

text

data

heap

Virtual
Memory

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x20FF

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000
0x????

Who keeps
track of the
mapping?

→ Page Table
0
1
2
3
4
5…

-
3
6
4
8
5

16

Simple Page Table

Lives in Memory
Page-table base register (PTBR)
• Points to the page table
• Saved/restored on context switch

PTBR

Page-table

• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging

17

18

Full Page Table

Meta Data about each frame
Protection R/W/X, Modified, Valid, etc.
MMU Enforces R/W/X protection

(illegal access throws a page fault)

PTBR

Page-table

• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging

19

Dynamic Loading
• Routine is not loaded until it is called
• Better memory-space utilization; unused

routine is never loaded
• No special support from the OS needed

Dynamic Linking
• Routine is not linked until execution time

• Locate (or load) library routine when called

• AKA shared libraries (e.g., DLLs)

Dynamic Loading & Linking

20

• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging

21

• P1 forks()
• P2 created with
- own page table

- same translations

• All pages
marked COW
(in Page Table)

Copy on Write (COW)

22

stack

text

data

heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

stack

text

data

heap

P2 Virt Addr Space

COW
X

X

X

X

X

X

X

X

Now one process tries
to write to the stack (for

example):
• Page fault
• Allocate new frame
• Copy page
• Both pages no longer

COW

Option 1: fork, then keep executing

23

stack

text

data

heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

stack

text

data

heap

P2 Virt Addr Space

stack

COW

X

X

X

X

X

X

X

X

Before P2 calls
exec()

Option 2: fork, then call exec

24

stack

text

data

heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

stack

text

data

heap

P2 Virt Addr Space

stack

text

data

heap

P2 Virt Addr Space

COW
X

X

X

X

X

X

X

X

stack

text

data

After P2 calls exec()

• Allocate new
frames

• Load in new pages
• Pages no longer

COW

25

stack

text

data

heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

P2 Virt Addr Space

stack

text

data

COW

Option 2: fork, then call exec

Memory Consumption:

• Internal Fragmentation
• Make pages smaller? But then…

• Page Table Space: consider 32-bit address space,
4KB page size, each PTE 8 bytes
• How big is this page table?

• How many pages in memory does it need?

Performance: every data/instruction access
requires two memory accesses:

• One for the page table

• One for the data/instruction

Downsides to Paging

26

