PS5 - Filesystem

Drew Zagieboylo
4/27/18

Filesystems

e Provide permanent storage

e (Goals:
e Common use cases are fast
| ow storage overhead

e Simple structure

Filesystems

e Several Layers of Abstraction

minifile

e File ‘Handles’ (Descriptors) - given
e FileSystem Data structures - you define LA

e Disk - given

The Disk

e |ndependently controlled
e Asynchronous access

e Re-ordered requests

¢ disk read block(disk t* disk, 1nt blocknum,
char* buffer)

® disk write block(disk t* disk, int
blocknum, char* buffer)

Minifile API

A subset of the Unix File API

e can lookup details with the ‘man’ command
Create/read/write/delete Files

e different “modes” allow slightly different behavior
Create/Delete Directories

“Deletion” functions are optional
(but will net you some E.C.)

Minifile API -Files

* Opening a File

e Creates a stateful
File Handle

(minifile t)

 Maintains a “cursor”
which points to a
byte in the file

* |ndependent Read
and Write “cursors”

Minifile API -Files

e (Call ‘read’ on file to
read N bytes

e Reads from read
cursor’s position and
advances

Minifile API -Files

Output:
[ByteO,Bytel...

ByteN-1]

e (Call ‘read’ on file to
read N bytes

e Reads from read
cursor’s position and
advances

Minifile APl -Dirs

Directories No ‘validity indicator’

—

Special kind of file

e Bit in inode to indicate

P

Data = A list of ‘Validity indicator
name:inodeNum pairs

Maybe helpful: validity

Minifile API

e Creating directories

e just like creating files
e Removing directories

e just like removing files (except it has to be empty!)
e minifile 1s

® [‘hello.txt’, ‘solns p3’, ’"grades.csv’,
‘solns p4’, ‘.7, Y..7]

e ‘. and ‘..’ are optional

Minifile APl - Concurrency

e E.Q.
 Real file systems have e Fis a file handle for
extensive support ‘/drew/foo.txt’
T1 calls write(F)
* Your obligation: serialize T2 calls read(F)
all operations on a
minifile t e Fither:
 Concurrent operations on e T1 writes, THEN T2
the same file reads
via different file handles
have undefined behavior e T2 reads, THEN T1

writes

Internal FS API

This is a recommended strategy for structuring code
You define it!

Needs to do things like:

e Allocate/Free Inode

e Allocate/Free Datablock

 Read/Write block n from File

Can then use to implement the Minifile API

MKFS

* “Make File System”
e Required file for submission (mkfs.c)

e Generates a file system containing only 1 directory (the ‘root’ directory)

Uses the Linux file “MINIFILESYSTEM”

int main(1nt argc, char** argv) {
use existing disk = 0;
disk name = “MINIFILESYSTEM”;
minithread system i1nitialize (..)

File System Review

e For this project e |Inodes:
e Superblock (examples) * 11 direct blocks
e Root Inode Num * 1 indirect block

e Multiple Inodes fit in 1

e Num of First Free _
block -> can just use 1

Inode

e Num of First Free * Free List(s)

Datablock e Keep Track of unused

blocks

File System Review

e http://www.cs.cornell.edu/courses/cs4410/2018sp/
schedule/slides/11-filesystems.pdf

http://www.cs.cornell.edu/courses/cs4410/2018sp/schedule/slides/11-filesystems.pdf
http://www.cs.cornell.edu/courses/cs4410/2018sp/schedule/slides/11-filesystems.pdf

