
P3
Unreliable Datagram 

Communication
Drew Zagieboylo

CS 4411 - March 9th, 2018

P2
Postmortem

• Great Job!

• Don’t stress about grades :)

• We’re strict on interrupt safety now so that you don’t
have to worry later

• (this will improve your P3-P5 grades)

P2
Postmortem

• Common Bugs

• In minithread_exit()

• semaphore_V() doesn’t create lock around cleanup
queue (need another semaphore or disable
interrupts)

• interrupts need to be disabled until mt_switch()

P2
Postmortem

• Common Bugs

• Scheduling the idle thread

• Only run if there’s nothing on any level of the run
queue

• Use a single schedule_next_thread() function

P2
Postmortem

• Common Bugs

• Alarm Queue Interrupt Safety

• Alarm is User-Facing

• Must implement interrupt-safety when accessing
alarm queue

Networking
• Processes and

Machines

• Protocol

• Agreement for how
to communicate

• Many-layered stack

• OS -> 
Transport Layer

Message

Datagram Protocol

• Simplest Transport
Layer Protocol

• “Here are some
bytes!”

• Message + Sender +
Receiver

To: Destination

From: Sender

Message

Datagram Protocol
• Datagrams could be

delivered:

• out of order

• not at all

• Have max size, larger
messages must be
broken into multiple
datagrams

• Handling ^ is the
application’s problem

To: Destination

From: Sender

Datagram Protocol
• Header

• All ‘metadata’ about
message

• address identifies the
physical machine

• port (usually) identifies
the process/thread on
the machine

• port is NOT the
same as Linux ports

•miniheader.h

• mini_header_t

• {  
 protocol  
 src_port  
 src_address  
 dest_port  
 dest_address  
}  
  

Datagram Protocol

• Interface:

• create/destroy
miniport

• send

• receive

• bound vs. unbound 
miniports

• unbound

• used for ‘listening’ (like a server)

• used to receive responses

• bound

• used to send messages

• need to specify a remote unbound port 
  

Datagram Protocol

Unbound
PortNum: 22

Thread 1 Thread 2

Bound
PortNum: 32768

IP: <IP>
Port: 22

Src Addr: <IP> 
Src Port: 44 
Dest Addr: <IP>
Dest Port: 22 

“This is a
message for

thread 1”

“This is a
message for

thread 1”

Unbound
PortNum: 44+

Datagram Protocol
• send vs. receive

• send

• minimsg_send(local_unbound_port,
local_bound_port, msg, len)

• receive

• minimsg_recv(local_unbound_port,
new_local_bound_port, msg, len)  

Datagram Protocol

Used to identify the destination

Used to receive response

• send vs. receive

• send

• minimsg_send(local_unbound_port,
local_bound_port, msg, len)

• receive

• minimsg_recv(local_unbound_port,
new_local_bound_port, msg, len)  

Datagram Protocol

Used to identify the listener

Used to send future responses

• send vs. receive

• send

• minimsg_send(local_unbound_port,
local_bound_port, msg, len)

• receive

• minimsg_recv(local_unbound_port,
new_local_bound_port, msg, len)  

Minimsg Send

main() {  
 char[] msg = “hello_world”;  
 mp* remote_mp = miniport_create_bound( 
 addr(“123.123.123”),22);  
 mp* local_mp = miniport_create_unbound(44);  
 minimsg_send(local_mp, remote_mp, msg, 12);  
}

Minimsg Send

• Fire & Forget

• Create header; then send packet

• We supply a ‘send packet’ primitive

• network_send_pkt(dest_ip, header_len,  
 header, msg_len, msg)

Minimsg Receive

main() {  
 mp* local_mp = miniport_create_unbound(22);  
 mp* remote_mp;  
 char[] test;  
 minimsg_receive(local_mp, &remote_mp, test, 20); 
 if(strcmp(test, “hello_world”) == 0) {  
 minimsg_send(local_mp, remote_mp, “HI!”, 4);  
 }  
}

Minimsg Receive

• How do we receive messages?

• What does minimsg_recieve look like?

• Busy waiting for I/O is wasteful!

• Receive a notification whenever a datagram arrives! 
(interrupt)

• Multiple threads can ‘listen’ on the same port -> each
datagram is just received by any one of them

Network Handler
• For each unbound port number:

• See if it’s been created

• Maintain a queue of received datagrams

• For each bound port number:

• See if it’s been created

• Maintain info on port to which it’s bound

Network Handler

1. Triggered by network interrupt (packet received)

2. Need to:

1. Disable interrupts

2. Check header contents

3. Save packet on appropriate miniport queue

4. Notify any waiting threads that packet has arrived

Real Network Impl
• network.c implements a virtual network, using the Unix

sockets API

• Can introduce virtual unreliability and re-ordering

• You can actually communicate over the internet

• ^ The real network really will drop packets.

• Use local communication (e.g. between PortOS threads)
to ensure reliability when testing

Misc
• miniheader.h has functions for reading/writing headers

• Don’t modify any of the new header files

• Grading will be autograded with a large suite of tests

• We provide a very small number

• We will much more extensively stress test your sends,
error handling, etc.

• Other guidelines will be in the README

