P2 - Preemptive
Scheduling

Drew Zagieboylo
2/23/18

P1 Postmortem

P1 - Nonpreemptive

int threadZ (int* arqg) {

.\
yKﬂdO minithread fork(thread3, NULL);

e allow another orintf ("Thread 2.\n");
thread to run

minithread yield();
e w/0 yield() -> single
threaded behavior return O;

P2 - Thread Pre-emption

e How?

e |nterrupts! -> A type of Asynchronous execution
e When?

e A timer -> uses HW clock
e \What?

e An ISR (interrupt service routine)

Interrupt Handling

» Description: * API:

 Register ISR for minithread_clock_init(isr)
specific interrupt type
e set_interrupt_level(level)
 Enable/Disable

Interrupts Global Variable: ‘ticks’

e Read Clock Value e Number of clock ticks
since OS start

Interrupt Handling

---------- <
proc_1
X
//proc 1 .
T 14
Oxbeel while (1) {
Oxbeed x = x + 1;
pc—P Oxbee8 mt_yield();

Oxbeec }

proc_1 :

//1 INTERRUPT!

Oxbeel
Oxbeed

pc—» Uxbeed
Oxbeec

while (1) {
X = x + 1;

"

Interrupt Handling

proc_1

//proc 1 §
. \4
--------- <
clock_handler:
Oxbee0 while (1) {
Oxbeed x =x + 1;
pc—» 0Oxbees

Oxbeec }

Interrupt Handling

proc_1

clock handler

A\
A
A
A
A
A
I e n
"‘
4

cIock_handIer.:"

//plck next thread ‘
//mt switch to next thread{

//re—enable interrupts

Interrupt Safety

Critical Section -> some need to be interrupt safe
Don’t forget to re-enable interrupts when done!
When ISR starts:

e |nterrupts must be disabled

DON’T block (sema_P) while handling interrupts

Semaphore updates must be interrupt-safe

Semaphore

semaphore P (sema) {
sema->count--;
if (count < 0) {
queue append (sema->q, minithread self());
minithread stop();

J

These lines must happen atomically ->
in Port OS this requires interrupt safety

Alarms!

Description:

Asynchronous execution e API:

Execute some function at a ® alarm register (delay,
future time func)

Can ‘cancel’ them ® alarm deregister (alarm)

*Interrupt Safety”

Alarms!

* Every clock tick
* Check alarms -> execute any that are due to execute
e Must run in O(n), n = number of ready alarms
e NOT Of(r), r = number of registered alarms

* (You may need to modify your queue API)

Alarms

 YoUu'll implement ‘minithread_sleep_with_timeout’ as an exercise
 Deschedules thread for a fixed amount of time

 Should be a very short bit of code)

Scheduling Algorithm

e Need a way to pick the next thread to run
e (Do this after everything else works)

e As of P1 - FIFO

Multilevel Feedback
Queue

Level

e High Priority (Low Level Num) 0

Quick Tasks -> need low latency

e Usually I/0O heavy 1
e Low Priority (High Level Num) 5

Need more CPU time -> needs

more throughput

3

e computationally heavy

Multilevel Feedback
Queue

Level
e High Priority (Low Level Num)
0
e Give more CPU time overall
e |Less CPU time per task 1
2
e Low Priority (High Level Num)
e Less CPU time overall 3

e More CPU time per task

Multilevel Feedback
Queue

Time Allocated Time Allocated Level
Per Thread Per Queue
270 5t 0
2M 2.5t 1
2172 1.5t 2
213 t 3

Multilevel Feedback
Queue

Time Allocated Time Allocated Level
Per Thread Per Queue
o7(5t / 0
Start a new Thread
LY 2.5t 1
212 1.5t 2

2"3 t 3

Multilevel Feedback
Queue

Time Allocated Time Allocated Level
Per Thread Per Queue
270 5t 0

After 1 tick, thread still executing

2" 2.5t 1

2"2 1.5t 2

2"3 t 3

Multilevel Feedback
Queue

Time Allocated Time Allocated Level
Per Thread Per Queue
270 5t 0

Demote thread to LVL 1

~—

LY 2.5t 1

2"2 1.5t 2

2"3 t 3

Multilevel Feedback
Queue

Time Allocated Time Allocated Level
Per Thread Per Queue
270 5t 0

/

Pick another thread from LVL O
oN to run 1

2"2 1.5t 2

2"3 t 3

Multilevel Feedback
Queue

Time Allocated Time Allocated Level
Per Thread Per Queue
270 5t 0
Eventually... —_—
N Pick a thread from LVL 1 Instead 1
212 1.5t 2
213 t 3

