P1 - Semaphores

Drew Zagieboylo
2/9/18



Thread Death

vold hello w() {
printf (“Hello World!”),; .cemeee-s <
} return; hello w ra(&mt_exit)
sp —>
vold mt exit () { M

//do cleanup
while (1) {};



Thread Deqth

mt_exit !

void hello w() { sp .

"

printf (“Hello World!”);
return;

volid mt_exit()‘TV
//do cleanup
while (1) {};



Thread State Transitions

yield,

interrupt,
descheduled
Admitted to /\
Run Queue .
dispatch

/O or threa& /O operation

Completion- join(), wait()

TCB:
Registers: .

done,
hread exit()




Thread State Transitions

*

o - Have Queues
Admitted to /\
R

'un Queue .
* dispatch

/O or thread /O operation

Completion- join(), wait()
*

TCB:
Registers: .

done,
hread exit()




Thread Death

Cleanup Thread

vold cleanup () {
void mt exit () { while (1) {
//do cleanup Problems? //remove thread to clean

from gueue
put current thread on // q

cleanup queue

f Lt tack
while (1) {}; //free its stac

//free its tcb
}



Thread Cleanup

vold cleanup () {

e Cleanup thread needs while (1) {

//remove thread to clean
to be scheduled Jfrom queue

How?

e Shouldn’t run when ,/free its stack

there’s nothing to clean ;/free its tcb



Semaphores!

Finally I should l1ike to thank the members of
the program committee who asked for more
information on the synchronizing primitives
and some justification of my claim to be able
to prove logical soundness a priori. In
answer to this request the appendix has been
added, of which I hope that 1t gives the
desired information and justification.

® FEdsger W. Dijkstra. 1967. The structure of the “the”-multiorogramming system. In Proceedings of the first
ACM symposium on Operating System Principles (SOSP '67), J. Gosden and B. Randell (Eds.). ACM, New
York, NY, USA, 10.7-10.6. DOI=http.://dx.doi.org/10.1145/800001.811672

® htips.//dl.acm.org/citation.cim?id=811672



http://dx.doi.org/10.1145/800001.811672
https://dl.acm.org/citation.cfm?id=811672

The Private Semaphores.

Each secquential process has @ssociated with it
a8 number of private semaphores and no other process
will ever perform a P-pparation on them. The universs
initializes them with the value = 0, their maximum
value = 1, their minimum value = - 1.

vWhenever a process reaches a stage where the
permission for dynemic progress depends on current
values of stete variebles, it follows the pettern:

P(mutex);

"inspection and modification of states varisbles
including a canditional V(private semaphars)";
V(mutex);

P(private semaphore)

If the inspection learns that the process in
guestion should continue, it performs the operation
"W(private semaophore)” —the semaphore value then
changas from O to 1=, otherwise this V-operation
is skipped, leaving to the other processes the
obligation to perform this V~operation at a suitable
moment. The absence or presenca of this obligatian
ia reflected in the final values of the state
variables upon leaving the critical section.

Whenever s process reaches a stege where as a
result of its progress possibly one (or more)
blocked processes should now get permission to
continue, it follows the pattern

P(mutex);

"madification and inspection of state variables
including zeroc or more V=operations on private
semaphores of other processes";

V(mutex)

By the introduction of suitable astate variables
and appropriate programming of the critical sections
any strategy assigning peripherals, buffer areas =tc.
can be implemanted.

The amount of coding and reagoning can he
greatly reduced by the obsexrvation that in the two
complementary criticsel sections sketched above, the
same inspection can be performed by the intraduction
of the notion of "an unstable situation", such as
a free reader and a process needing a reader,
Whenever an unstable situation ewmerges it is
removed (including one or mare V-operations an
orivate semnphores) in the very same critical
section in which it has been created,



Semaphores

o Stateful: e Functions:

e count e P(sema)
procure -> block
e queue of threads this thread until
resource can be
procured

e \V(sema)
vacate -> release
this resource and
continue



Thread State Transitions

yield,

interrupt,
descheduled
Admitted to /\
Run Queue .
dispatch

/O or threa& /O operation

Completion. join(), wait()

TCB: On semaphore’s Queue
Registers: On stack .

done,
hread exit()




Thread State Transitions

yield,
interrupt,
descheduled
Admitted to /\
H

\un Queue .
dispatch
Semaphore_V(;\ %emaphore_P()*

TCB: On semaphore’s Queue
Registers: On stack

done,
hread exit()




Example

var x = 0;
void 1inc () { void dec () {
int 1 = 0; int 1 = 0;
(for; 1 < 1000, 1++) (for; 1 < 1000, 1++)

X++; X——;



NOT ATOMIC!



var X =
var lock

vold 1nc
int 1
(for;
v =

0;

= sema (1) ;

() | vold dec () {
= 0; int 1 = 0;
1 < 1000; 1++) (for; 1 <

x + 1;

Example

X = X -



var X =
var lock

vold 1nc
int 1
(for;
P(lo
x =
V(lo

0;

() |

= 0;

1 < 1000;
ck) ;

x + 1;
ck) ;

Example

sema (1) ;

volid dec () {
int 1 = 0;
<

1++) {

(for; 1
X = X -



var x = 0;
var lock = sema(l);
void inc () { \Y dec () {
int 1 = 0; t 1= 0;
(for; 1 < 1000;: (for; 1 < 1000; 1i++){
P(lock) ; P(lock);
X = xX + 1; X = x - 1;
V (lock) ; V(lock) ;



Semaphores

o Stateful: e Functions:

e count e P(sema)

procure -> block
e queue of threads this thread until
resource can be
procured

request

while (re —>count > 0) {

e \V(sema)
vacate -> release
this resource and
continue



Semaphore
Invariants

e Count:
e Ifc=0
* The number of resources available
e Ifc=0

e The number of threads waiting on the queue



Thread Cleanup

vold cleanup () {
while (1) {
//wait for thread
e Cleanup thread needs //to be on queue

to be scheduled
//remove thread to clean

//from gueue
e Shouldn’t run when E

there’s nothing to clean //free its stack
//free its tcb



