
P1 - Semaphores
Drew Zagieboylo

2 / 9 / 18

Thread Death

void hello_w() {  
 printf(“Hello World!”);  
 return;  
}

ra(&mt_exit)

…

…

hello_w

…

…

sp
void mt_exit() {  
 //do cleanup  
 while (1) {};  
}

Thread Death

void hello_w() {  
 printf(“Hello World!”);  
 return;  
}

…

…

sp

void mt_exit() {  
 //do cleanup  
 while (1) {};  
}

mt_exit

pc

done,
thread_exit()

Init

Admitted to
Run Queue

Ready dispatch Running

TCB:
Registers:

yield,
interrupt,

descheduled

Waiting

I/O operation
join(), wait()

I/O or thread
 completion

Finished

Thread State Transitions

done,
thread_exit()

Init

Admitted to
Run Queue

Ready dispatch Running

TCB:
Registers:

yield,
interrupt,

descheduled

Waiting

I/O operation
join(), wait()

I/O or thread
 completion

Finished

Thread State Transitions

*

*

** - Have Queues

Thread Death

void mt_exit() {  
 //do cleanup  
 put current thread on  
 cleanup queue  
 while (1) {};  
}

void cleanup() {  
 while (1) {  
 //remove thread to clean  
 //from queue  
 
 //free its stack  
 //free its tcb  
 }  
}

Cleanup Thread

Problems?

Thread Cleanup

• Cleanup thread needs
to be scheduled

• Shouldn’t run when
there’s nothing to clean

void cleanup() {  
 while (1) {  
 //remove thread to clean  
 //from queue  
 
 //free its stack  
 //free its tcb  
 }  
}

How?

Semaphores!
Finally I should like to thank the members of
the program committee who asked for more
information on the synchronizing primitives
and some justification of my claim to be able
to prove logical soundness a priori. In
answer to this request the appendix has been
added, of which I hope that it gives the
desired information and justification.

• Edsger W. Dijkstra. 1967. The structure of the “the”-multiprogramming system. In Proceedings of the first
ACM symposium on Operating System Principles (SOSP '67), J. Gosden and B. Randell (Eds.). ACM, New
York, NY, USA, 10.1-10.6. DOI=http://dx.doi.org/10.1145/800001.811672

• https://dl.acm.org/citation.cfm?id=811672

http://dx.doi.org/10.1145/800001.811672
https://dl.acm.org/citation.cfm?id=811672

Semaphores

• Stateful:

• count

• queue of threads

• Functions:

• P(sema) 
procure -> block
this thread until
resource can be
procured

• V(sema) 
vacate -> release
this resource and
continue

done,
thread_exit()

Init

Admitted to
Run Queue

Ready dispatch Running

TCB: On semaphore’s Queue
Registers: On stack

yield,
interrupt,

descheduled

Waiting

I/O operation
join(), wait()

I/O or thread
 completion

Finished

Thread State Transitions

done,
thread_exit()

Init

Admitted to
Run Queue

Ready dispatch Running

TCB: On semaphore’s Queue
Registers: On stack

yield,
interrupt,

descheduled

Waiting

semaphore_P()*Semaphore_V()*

Finished

Thread State Transitions

Example

var x = 0;

void inc() {  
 int i = 0;  
 (for; i < 1000; i++)  
 x++;  
}

void dec() {  
 int i = 0;  
 (for; i < 1000; i++)  
 x--;  
}

Example

var x = 0;

void inc() {  
 int i = 0;  
 (for; i < 1000; i++)  
 x = x + 1;  
}

void dec() {  
 int i = 0;  
 (for; i < 1000; i++)  
 x = x - 1;  
}

NOT ATOMIC!

Example
var x = 0;  
var lock = sema(1);

void inc() {  
 int i = 0;  
 (for; i < 1000; i++)  
 x = x + 1;  
}

 

void dec() {  
 int i = 0;  
 (for; i < 1000; i++)  
 x = x - 1;  
}

Example
var x = 0;  
var lock = sema(1);

void inc() {  
 int i = 0;  
 (for; i < 1000; i++){  
 P(lock);  
 x = x + 1;  
 V(lock);  
 }  
}

 

void dec() {  
 int i = 0;  
 (for; i < 1000; i++)  
 x = x - 1;  
}

Example
var x = 0;  
var lock = sema(1);

void inc() {  
 int i = 0;  
 (for; i < 1000; i++){  
 P(lock);  
 x = x + 1;  
 V(lock);  
 }  
}

 

void dec() {  
 int i = 0;  
 (for; i < 1000; i++){  
 P(lock);  
 x = x - 1;  
 V(lock);  
 }  
}

Semaphores

• Stateful:

• count

• queue of threads

• Functions:

• P(sema) 
procure -> block
this thread until
resource can be
procured

• V(sema) 
vacate -> release
this resource and
continue

requests = sema(0);

while (requests->count > 0) {
 …
 …
}

Semaphore 
Invariants

• Count:

• If c ≥ 0

• The number of resources available

• If c ≤ 0

• The number of threads waiting on the queue

Thread Cleanup

• Cleanup thread needs
to be scheduled

• Shouldn’t run when
there’s nothing to clean

void cleanup() {  
 while (1) {  
 //wait for thread  
 //to be on queue  
  
 //remove thread to clean  
 //from queue  
 
 //free its stack  
 //free its tcb  
 }  
}

