Security

CS 4410
Operating Systems

[E. Birrell, A. Bracy, E. Sirer, R. Van Renesse]

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

References: Security Introduction and Access Control by Fred Schneider

http://www.cs.cornell.edu/fbs/publications/chptr.Intro.pdf
http://www.cs.cornell.edu/fbs/publications/chptr.DAC.pdf

Historical Context

Compatible Time-Sharing System (CTSS) is
Demonstrated

The increasing number of users needing access to computers in the early 1960s leads
to experiments in timesharing computer systems. Timesharing systems can support
many users — sometimes hundreds — by sharing the computer with each user. CTSS
was developed by the MIT Computation Center under the direction of Fernando
Corbat6 and was based on a modified IBM 7094 mainframe computer. Programs
created for CTSS included RUNOFF, an early text formatting utility, and an early inter-
user messaging system that presaged email. CTSS operated until 1973.

Kenneth Thompson and Dennis Ritchie
develop UNIX

AT&T Bell Labs programmers Kenneth Thompson and Dennis Ritchie develop the UNIX
operating system on a spare DEC minicomputer. UNIX combined many of the
timesharing and file management features offered by Multics, from which it took its
name. (Multics, a project of the mid-1960s, represented one of the earliest efforts at
creating a multi-user, multi-tasking operating system.) The UNIX operating system
quickly secured a wide following, particularly among engineers and scientists, and today
is the basis of much of our world’s computing infrastructure.

1960’s OSes begin to be shared. Enter:

e Communication

* Synchronization

* Protection

* Security: once a small OS sub-topic. Not anymore!

http://www.computerhistory.org, https://en.wikipedia.org

Security Properties: CIA

Confidentiality: keeping secrets
- who is allowed to learn what information
Integrity: permitting changes
- what changes to the system and its
environment are allowed
Availability: guarantee of service
- what inputs must be read | outputs produced

Are they orthogonal? Sadly, no...

Security in Computer Systems
Gold (Au) Standard for Security [Lampson]

& Authorization: mechanisms that govern whether
U actions are permitted

«=#p Authentication: mechanisms that bind principals
to actions

® _ Audit: mechanisms that record and review
actions

Plan of Attack (no pun intended!)

* Protection - This lecture
* Authorization: what are you permitted to do?
 Access Control Matrix

* Security - Next lecture |
» Authentication: how do we know who you are? %,
* Threats and Attacks ¥,

Cornell CIS

Access Control Terminology

Operations: how one learns or updates information
Principals: executors (users, processes, threads,
procedures)

Objects of operations: memory, files, modules, services

Access Control Policy:
* who may perform which operations on which objects
» enforces confidentiality & integrity

Goal: each object is accessed correctly and only by those
principals that are allowed to do so

Access Control Mechanisms

Reference Monitor:
 entity with the power to observe and enforce the policy
* consulted on operation invocation
* allows operation to proceed if invoker has required

privileges
* Can enforce confidentiality and/or integrity

Assumptions:
* Predefined operations are the sole means by which principals

can learn or update information
 All predefined operations can be monitored (complete

mediation)

Trusted Computing Base (TCB)

Heart of every trusted system has a small TCB
* HW & SW necessary for enforcing security rules
* Typically has:

— most hardware, firmware
— portion of OS kernel

— most or all programs with superuser power
* Desirable features include:

— Should be small
— Should be separable and well defined
— Easy to audit independently

Reference Monitor

Critical component of the TCB
* All sensitive operations go through the
reference monitor
* Monitor decides if operation should proceed
* Notin most OSes

-
AL User space

Reference Monitor

-
Trusted Computing Base Kernel space

OS kernel

Who defines authorizations?

Discretionary Access Control:

* owner defines authorizations

* Subjects determine who has access to their objects
 Commonly used (Unix File System)

* Flawed for tighter security (program might be buggy)
* This lecture

Mandatory Access Control:

* System imposes access control policy that object
owner’s cannot change
 centralized authority defines authorizations

Principle of Least Privilege

“Every program and every privileged user of the system
should operate using the least amount of privilege
necessary to complete the job.”

- Jerome Saltzer
(of the end-to-end argument)

Want to minimize:
* coderunning inside kernel
* code running as sysadmin

Challenge: It’s hard to know:

* what permissions are needed in advance
* what permissions should be granted

Access Control Matrix

* Abstract model of protection
* Rows: principals = users
* Columns: objects =files, I/0, etc.

OBJECTS
Principals | prelim.pdf | jim-hw.tex | scores.xls
egs
el r, W r r,w
Jim
(student) f, W

Unordered set of triples <Principal,Object,Operation>
What does Principal of Least Privilege say about this? .

Need Finer-Grained Principals

Protection Domains = new set of principals

* each thread of control belongs to a protection domain

» executing thread can transition from domain to
domain

Example domain: user > task

» task = program, procedure, block of statements

 task = started by user orin response to user’s
request

 user > task: holds minimum privilege to get task
done for user

- task-specific privileges (PoLP is €)

13

Protection Domain Implementation
Possibilities:

1. Certain system calls cause protection-
domain transitions. Obvious candidates:
* invoking a program
* changing from user mode to supervisor mode

2. Provide explicit domain-change syscall
» application programmer or a compiler then
required to decide when to invoke this domain-
change system call

14

Access Matrix with Protection Domains

Principals

OBJECTS

prelim.pdf

jim-hw.tex

scores.xls

egs>sh

egsl>latex

r, W

r

egsP>excel

r, W

jim>sh

jim>latex

r, W

jim>excel

When to transition protection-domains?
* invoking a program
» changing from user to kernel mode

Need to explicitly authorize them in the matrix

15

Access Matrix with Domain Transitions

OBJECTS
= o v X — X —
= hif = @ @ @ w
. ; : < 4ch §J< < 4&; §
= = 4 n — cu " — v
— . C A A A A A A
mcipals | & |5 |S |B (B |® |5 |5 |35
Principals s | M I o o o = — —
egsP>sh e e
egsP>latex | r,w r
egsD>excel r, w
jim>sh s e
jim>1latex r, W
jimP>excel

e = enter

16

DAC Implementation Needs
Must support:

* Determining if <Principal,0Object,Operation>is in matrix
* Changing the matrix

 Assigning each thread of control a protection domain

* Transitioning between domains as needed

* Listing each principal’s privileges (for each object)

* Listing each object’s privileges (held by principals)

2D array?
+ looks good in powerpoint!
- sparse =»> store only the non-empty cells

17

How shall we implement this?

Access Control List (ACL): column for each object stored
as a list for the object

Principals

egs>sh

egsl>latex

egsP>excel

Jim>sh

jim>latex

jim>excel

How shall we implement this?

Access Control List (ACL): column for each object stored
as a list for the object

Capabilities: row for each subject stored as list for the
subject

OBJECTS

Principals | prelim.pdf | jim-hw.tex | scores.xls

Same in theory; different in practice!

Access Control Lists

ACL for an object O is a list

(P, Privsy), (P,, Privs,), ... ,{P,, Privs,)
e.g., (ebirrell, {r,w}) (clarkson, {r}) (student, {r})

To check whether P; is allowed to perform
op on object O,
* Lookup P; in ACL. If not in list, reject op.
* Check whether op is in the sent Privs;. It
not, reject op.

20

Access Control in Windows

& | [@ [5| Local Disk (C:) - o X
I“ Home Share View 9
<« v M Z» > ThisPC > Local Disk (C:) v O Search Local Disk (C:) P

Quick access Name Date modified Type Size
i Desktop * Data S/1A42015 2:15 AN Fila faldar >
Data P rti
& Downloads b g EFI ata Fopertes
PerfLogs . . - n "
|| Documents b g) - General | Sharing | Security | Previous Versions | Customize
rogram Files
Pict » . . :
& Fictures Program Files (3 Object name: C:\Data
¢& OneDrive Users Group or user names:
| Windows
&) This PC 52 SYSTEM
{3 Desktop 82, Administrators (WIN-OJ7HO003865\Administrators)
 Documents 82, Users (WIN-OJ7HOD03865\Users)
‘l' Downloads To change pemissions, click Edit. G Edit...
J2 Music Pemissions for Authenticated
. Users Allow Deny
« Pictures
] Full control 2
Videos Modify
%> Local Disk (C:) Read & execute
Q Shared (\\vboxsr) (List folder contents
Read
Q Network Write v
For special pemissions or advanced settings,
click Advanced. fbrencad
Titems 1item selected =z -

Cancel

In NTFS: each file has a set of properties
Richer set than UNIX: RWX

P(permission) O(owner) D(delete), read (RX), change (RWXO),
full control (RWXOPD)

Access Control Lists Roundup

Advantages:
 Efficient review of permissions for an object
* Centralized enforcement is simple to deploy,
verify
* Revocation is straightforward

Disadvantages:
* Inefficient review of permissions for a principal
* Large lists impede performance
* Vulnerable to confused deputy attack

22

Capability Lists

The capability list for a principal P is a list
(04, Privsq),(0,, Privs,), ... ,{0,, Privs,)
e.g., (dac.tex, {r,w}) (dac.pptx, {r,w})

Capabilities carry privileges:

1) Authorization: Performing operation op on
object O; requires a principal P to hold a
capability C; = (0;, Privs;) such that op € Privs;

2) Unforgeability: Capabilities cannot be
counterfeited or corrupted.

Note: Capabilities are (typically) transferable

23

C-Lists

OS maintains & stores stores list of capabilities
C; = (0;, Privs;) for each principal (process)

1) Authorization: OS
mediates access to i

objects, checks process -
capabilities
2) Unforgeability:

capabilities are stored in Device drivers
prOteCted memOry
region (kernel memory)

Least privileged

Most privileged

Applications

24

Access Control in UNIX

UNIX: has user and group identifiers: uid and gid
Per process: protection domain =egs |facultyl>sh

Per file: ACL owner|group|other = storedini-node
* Only owner can change these rights (using chmod)
* Eachi-node has 12 mode bits for user, group, others
* Last 3 mode bits allow process to change across domains

(Hybrid!) Approximation of access control scheme:
* Authorization (check ACL) performed at open
* Returns afile handle - essentially a capability
* Subsequent read orwrite uses the file handle
25

Capabilities Roundup

Advantages:
* Eliminates confused deputy problems
* Natural approach for user-defined objects

Disadvantages:

* Review of permissions?
* Delegation?

* Revocation?

* Privacy?

26

ACLs vs Capabilities

principal P
across all objects

Need to scan all
objects’ lists.

ACLs: Capabilities:
For each Object: | <Object,privs>
<P,,privs,> held by a principal
<P,,privs,>...
Review rights for | Easy! Hard.
object O Print the list. Need to scan all
principals’ lists.
Review rights for | Hard. Easy!

Print the c-list.

Revocation

Easy!
Delete P from O’s
list.

Kernel tracks capabilities,
Invalidates on revocation.
Harder if object tracks
revocation list.

27

History of Discretionary Access Control (DAC)

1760+ early philosophical pioneers of private

pro

perty (Blackston, Bastiat,+)

1965 “access control lists” coined @ MIT
describing Multics (CTSS foreshadowed
ACLs) (Daley & Neumann)

1966 “ca
out

1974 ear

nability” coined and OS supervisor
ined @ MIT (Dennis & van Horn)

y computer security: “the user gives

access rights at his own discretion” (Walter+)

1983 DoD’s Orange book coins the term

“discretionary access control”

Plan of Attack

 Protection
* Authorization: what are you permitted to do?
 Access Control Matrix

* Security
» Authentication: how do we know who you are?
* Threats and Attacks

Cornell CIS

Authentication

Establish the identity of user/machine by
* Something you are:
retinal scan, fingerprint
* Something you have:
physical key, ticket, credit card, smart card

* Something you know:
password, secret, answers to security questions, PIN

In the case of an OS this is done during login
* OS wants to know who the user is

Multiple Factors

Two-factor Authentication: authenticate based

on two independent methods

* ATM card + PIN

* password + secret Q

» password + registered cell phone

Multi-factor Authentication: two or more
independent methods

Best to combine separate categories

» 2 passwords from a same person? arguably
not independent

Biometrics: something you are

» System has 2 components:
* Enrollment: measure & store characteristics
 Identification: match with user supplied values
* What are good characteristics?
Finger length, voice, hair color, retinal pattern,
voice, blood

Pros: user carries around a good password
Cons: difficult to change password, can be subverted

Authentication with Physical Objects

Door keys have been around long

Plastic card inserted into reader associated with comp
* Also a password known to user, to protect against lost card

Magnetic stripe cards: ~140 bytes info glued to card
* Isread by terminal and sent to computer
* Info contains encrypted user password (only bank knows key)

Chip cards: have an integrated circuit
» Stored value cards: have EEPROM memory but no CPU

— Value on card can only be changed by CPU on another comp
 Smart cards: 4 MHz 8-bit CPU, 16 KB ROM, 4 KB EEPROM, 512
bytes RAM, 9600 bps comm. channel

33

Challenge Response Scheme

New user provides server with list of Q/A pairs
* Server asks one of them at random
* Requires a long list of question answer pairs

Prove identity by computing a secret function
» User picks an algorithm, e.g. x?
* Server picks a challenge, e.g. x=7
* User sends back 49
» Should be difficult to deduce function by looking at results

In practice
* Algorithm is fixed, e.g. one-way hash, but user selects a key

* The server’s challenge is combined with user’s key to provide
input to the function

Authenticate yourself as a human:
CAPTCHA, image tasks, etc. SIlcee i) »

Passwords

Secret known only to the subject

Top 10 passwords in 2017: [SplashDatal]
1. 123456 6. 123456789
2. password 7. letmein
3. 12345678 8. 1234567
4, qwerty 9. football
5. 12345 10. iloveyou

16: starwars, 18: dragon, 27: jordan23

Top 20 passwords suffice to compromise 10% of accounts
[Skyhigh Networks]

Verifying Passwords

How does OS know that the password is correct?

Simplest implementation:
* OS keeps a file with {login, password) pairs
e Usertypes password
* OS looks for alogin=> password match

Goal: make this scheme as secure as possible
* display the password when being typed?

Storing Passwords

1. Store username/password in a file
» Attacker only needs to read the password file
* Security of system now depends on protection of this file!
Need: perfect authorization & trusted system administrators

Claudia Pellegrino 9
@c_pellegrino

Does T-Mobile Austria in fact store

customers’ passwords in clear text
?

T-Mobile Austria @ @tmobileat - Apr 4 v
Hi , I really do not get why this is a problem. You have so many
passwords for evey app, for every mail-account and so on. We secure all data
very carefully, so there is not a thing to fear. AKathe

Q 319 1 370 Q) 353

SeloX @SeloX_AUT

Eric™ @Korni22 - Apr 6 v
Replying to @c_pellegrino @°PWTooStrong @Telekom_hilft

Well, what if your infrastructure gets breached and everyone’s password is
published in plaintext to the whole wide world?

QO 5 n 87 Q 18K

Had the same issue with T-Mobile Austria. Apparently they are saving the password
in clear because employees have access to them (you have tell them your password
when you're taking to them on the phone or in a shop) and they are not case

sensitive T-Mobile Austria @ @tmobileat - Apr 6 v

What if this doesn't happen because our security is amazingly good?
10:53 PM - 3 Apr 2018

908 Retweets 2015Lkes (PSS DOQ B

QO 113 11 908 Q 2.0k

T-Mobile Austria & @tmobileat - Apr 3 v
Replying to

Hello Claudia! The customer service agents see the first four characters of your
password. We store the whole password, because you need it for the login for

AKéathe
Q 460 m 701 Q o917

Eric™ @Korni22 - Apr 6 v
Bad news for you Kéthe, nobody’s security is that good. No, not even yours. It’s
not that | say you are 100% getting hacked - what if an employee accesses the
database directly?

Q© 10 1 84 Q 27K

Arkan Hadi @cOderrOr - Apr 7 v
Pretty sure after this they will be penetrated in days if not hours, let's just hope

8 0 @ O ©

Nandrea its a white hat that have good intentions
Q 319 1 624 Q 589 O 1 () QO s
Claudia Pellegrino @c_pellegrino - Apr 4 v
Thanks for your reply Andrea! Storing cleartext passwords in a database is a
naughty thing to do. What can we do to get

your devs to fix that?

Tumblr
plaintextoffenders
4.0/5.0 stars — 381,908 ratings

https://twitter.com/c_pellegrino/status/981409466242486272

https://twitter.com/c_pellegrino/status/981409466242486272

Storing Passwords

1. Store username/password in a file

» Attacker only needs to read the password file
* Security of system now depends on protection of this file!
Need: perfect authorization & trusted system administrators

2. Store login/encrypted password in file
* Access to password file # access to passwords

Hashing

Want a function f such that:

1. Easyto compute and store h(p)

2. Hard to compute p given h(p)

3. Hard to find g such that q # p, h(g)==h(p)

Cryptographic hash functions to the rescue!
h(password) = encrypted-password e.g., MD5, SHA

* one-way property gives (1) and (2)
* collision resistance gives (3)
Remember: h(encrypted-password) # password

h-(encrypted-password) = password
h*hard to compute (hard * impossible)

41

Storing and Checking Passwords

plain text

—> E(ele[ly

hashed

_> -
function

Yes

Authenticated! <«

lookup

Password File

“login1 | passwd|

_/‘/

No

Denied!

Hashed passwords still vulnerable

Suppose attacker obtains password file:

/ete/passwd public, known hash fn known
+ hard to invert = hard to obtain all the passwords

Password File

e
 Brute Force Attack:

- Enumerate all possible passwords p, calculate h(p) and see
if it matches an entry in the file
* Dictionary Attack
— List all the likely passwords p, calculate h(p) and check for a
match. (recall: top 20 passwords can compromise 10% of
accounts)

How else can | crack this file?

Rainbow Table Attack

* Pre-compute the dictionary hashes (need space,
not time), use hashed passwords as key
* Quick attack: look up each hashed password 1-by-1

Password File “Rainbow Table”
. h(p) p
login | h(p) XXXXX | 123456
abc123 XXXXK etmm—
“bo12 password
abc125 XXXXX | 12345678
abc126 | XXXXX > XXXXX QWETY —— a,bC 128,5
abeter | XRARXR XXXKX assword is gwert
abc128 XXXXX 12345 p q y
abc129 | XXXXX XXXXX | 123456789
abc130 | XXXXX XXXXX | letmein
abc131 XXXXX
P — XXXXX | 1234567
abc133 | XXXXX XXXXX | football
abc1s4 | XHXX XXXXX | iloveyou 44
abc135 XXXXX

Salting

Vulnerabilities:

* single dictionary compromises all users
* passwords chosen from small space

Countermeasure: include a unique system-

chosen nonce as part of each user's password
* make every user's stored hashed password
different, even if they chose the same password
* now passwords come from a larger space

Each user has: login, unique salt s, passwd p
System stores: login, s, H(s, p)

46

Salting Example

login salt h(pl|s)
abc123 4238 | h(423812345)
abcl124 2918 | h(2918password)
abc125 6902 | h(6902LordByron)
abcl26 1694 | h(1694qwerty)
abc127 1092 | h(109212345)

abcl28 | 9763 | h(97636%%TaeFF)
abcl29 | 2020 | h(2020letmein)

* |f the hacker guesses qwerty, has to try:
h(OOOlgwerty), h(0002gqwerty), h(0003qwerty) ...
* UNIX adds 12-bit of salt

* Also, passwords should be secure:
* Length, case, digits, not from dictionary
* Canbeimposed by the OS! This has its own tradeoffs

