
Security

CS 4410
Operating Systems

References: Security Introduction and Access Control by Fred Schneider

[E. Birrell, A. Bracy, E. Sirer, R. Van Renesse]

http://www.cs.cornell.edu/fbs/publications/chptr.Intro.pdf
http://www.cs.cornell.edu/fbs/publications/chptr.DAC.pdf

Historical Context

2
http://www.computerhistory.org, https://en.wikipedia.org

1961

1969

1960’s OSes begin to be shared. Enter:
• Communication
• Synchronization
• Protection
• Security: once a small OS sub-topic. Not anymore!

Confidentiality: keeping secrets
� who is allowed to learn what information

Integrity: permitting changes
� what changes to the system and its

environment are allowed
Availability: guarantee of service
� what inputs must be read | outputs produced

Are they orthogonal? Sadly, no…

Security Properties: CIA

3

Gold (Au) Standard for Security [Lampson]

• Authorization: mechanisms that govern whether
actions are permitted

• Authentication: mechanisms that bind principals
to actions

• Audit: mechanisms that record and review
actions

Security in Computer Systems

4

• Protection - This lecture
• Authorization: what are you permitted to do?
• Access Control Matrix

• Security – Next lecture
• Authentication: how do we know who you are?
• Threats and Attacks

Plan of Attack (no pun intended!)

5

Operations: how one learns or updates information
Principals: executors (users, processes, threads,
procedures)
Objects of operations: memory, files, modules, services

Access Control Policy:
• who may perform which operations on which objects
• enforces confidentiality & integrity

Goal: each object is accessed correctly and only by those
principals that are allowed to do so

Access Control Terminology

6

Reference Monitor:
• entity with the power to observe and enforce the policy
• consulted on operation invocation
• allows operation to proceed if invoker has required

privileges
• Can enforce confidentiality and/or integrity

Assumptions:
• Predefined operations are the sole means by which principals

can learn or update information
• All predefined operations can be monitored (complete

mediation)

Access Control Mechanisms

7

Heart of every trusted system has a small TCB
• HW & SW necessary for enforcing security rules
• Typically has:
-most hardware, firmware
- portion of OS kernel
-most or all programs with superuser power
• Desirable features include:
- Should be small
- Should be separable and well defined
- Easy to audit independently

Trusted Computing Base (TCB)

8

Critical component of the TCB
• All sensitive operations go through the

reference monitor
• Monitor decides if operation should proceed
• Not in most OSes

Reference Monitor

9

User space

Kernel space

User
Process

OS kernel
Trusted Computing Base

Reference Monitor

Discretionary Access Control:
• owner defines authorizations
• Subjects determine who has access to their objects
• Commonly used (Unix File System)
• Flawed for tighter security (program might be buggy)
• This lecture

Mandatory Access Control:
• System imposes access control policy that object

owner’s cannot change
• centralized authority defines authorizations

Who defines authorizations?

10

“Every program and every privileged user of the system
should operate using the least amount of privilege
necessary to complete the job.”

- Jerome Saltzer
(of the end-to-end argument)

Want to minimize:
• code running inside kernel
• code running as sysadmin

Challenge: It’s hard to know:
• what permissions are needed in advance
• what permissions should be granted

Principle of Least Privilege

11

• Abstract model of protection
• Rows: principals = users
• Columns: objects = files, I/O, etc.

Unordered set of triples <Principal,Object,Operation>
What does Principal of Least Privilege say about this?

Access Control Matrix

12

Principals

OBJECTS
prelim.pdf jim-hw.tex scores.xls

egs
(prof) r, w r r, w

jim
(student) r, w

Protection Domains = new set of principals
• each thread of control belongs to a protection domain
• executing thread can transition from domain to

domain

Example domain: user ▷ task
• task = program, procedure, block of statements
• task = started by user or in response to user’s

request
• user ▷ task: holds minimum privilege to get task

done for user

à task-specific privileges (PoLP is J)

Need Finer-Grained Principals

13

Possibilities:

1. Certain system calls cause protection-
domain transitions. Obvious candidates:
• invoking a program
• changing from user mode to supervisor mode

2. Provide explicit domain-change syscall
• application programmer or a compiler then

required to decide when to invoke this domain-
change system call

Protection Domain Implementation

14

When to transition protection-domains?
• invoking a program
• changing from user to kernel mode
• …

Need to explicitly authorize them in the matrix

Access Matrix with Protection Domains

15

Principals
OBJECTS

prelim.pdf jim-hw.tex scores.xls
egs�sh

egs▷latex r, w r
egs▷excel r, w

jim�sh
jim▷latex r, w
jim▷excel

e = enter

Access Matrix with Domain Transitions

16

Principals

OBJECTS

pr
el

im
.p

df

ji
m-
hw

.t
ex

sc
or

es
.x

ls

eg
s▷

sh

eg
s▷

la
te

x

eg
s▷

ex
ce

l

ji
m▷

sh

ji
m▷

la
te

x

ji
m▷

ex
ce

l

egs▷sh e e
egs▷latex r, w r
egs▷excel r, w

jim▷sh e e

jim▷latex r, w
jim▷excel

Must support:
• Determining if <Principal,Object,Operation> is in matrix
• Changing the matrix
• Assigning each thread of control a protection domain
• Transitioning between domains as needed
• Listing each principal’s privileges (for each object)
• Listing each object’s privileges (held by principals)

2D array?
+ looks good in powerpoint!
− sparse à store only the non-empty cells

DAC Implementation Needs

17

Access Control List (ACL): column for each object stored
as a list for the object

How shall we implement this?

18

Principals
OBJECTS

prelim.pdf jim-hw.tex scores.xls
egs�sh

egs▷latex r, w r
egs▷excel r, w

jim�sh
jim▷latex r, w
jim▷excel

Access Control List (ACL): column for each object stored
as a list for the object
Capabilities: row for each subject stored as list for the
subject

Same in theory; different in practice!

How shall we implement this?

19

Principals
OBJECTS

prelim.pdf jim-hw.tex scores.xls
egs�sh

egs▷latex r, w r
egs▷excel r, w

jim�sh
jim▷latex r, w
jim▷excel

ACL for an object ! is a list
⟨#$, #&'()$⟩, ⟨#+, #&'()+⟩, … , ⟨#-, #&'()-⟩
e.g., ⟨ebirrell, {r,w}⟩ ⟨clarkson, {r}⟩ ⟨student, {r}⟩

To check whether #. is allowed to perform
/0 on object !,
• Look up #. in ACL. If not in list, reject /0.
• Check whether /0 is in the sent #&'().. If

not , reject /0.

Access Control Lists

20

Access Control in Windows

21

In NTFS: each file has a set of properties
Richer set than UNIX: RWX
P(permission) O(owner) D(delete), read (RX), change (RWXO),
full control (RWXOPD)

Advantages:
• Efficient review of permissions for an object
• Centralized enforcement is simple to deploy,

verify
• Revocation is straightforward

Disadvantages:
• Inefficient review of permissions for a principal
• Large lists impede performance
• Vulnerable to confused deputy attack

Access Control Lists Roundup

22

The capability list for a principal ! is a list
⟨#$, !&'()$⟩, ⟨#+, !&'()+⟩, … , ⟨#-, !&'()-⟩
e.g., ⟨dac.tex, {r,w}⟩ ⟨dac.pptx, {r,w}⟩

Capabilities carry privileges:
1) Authorization: Performing operation ./ on

object #0 requires a principal ! to hold a
capability 10 = ⟨#0, !&'()0⟩ such that ./ ∈ !&'()0

2) Unforgeability: Capabilities cannot be
counterfeited or corrupted.

Note: Capabilities are (typically) transferable

Capability Lists

23

OS maintains & stores stores list of capabilities
!" = ⟨%", '()*+"⟩ for each principal (process)

C-Lists

24

1) Authorization: OS
mediates access to
objects, checks process
capabilities

2) Unforgeability:
capabilities are stored in
protected memory
region (kernel memory)

UNIX: has user and group identifiers: uid and gid

Per process: protection domain = egs|faculty▷sh

Per file: ACL owner|group|other à stored in i-node
• Only owner can change these rights (using chmod)
• Each i-node has 12 mode bits for user, group, others
• Last 3 mode bits allow process to change across domains

(Hybrid!) Approximation of access control scheme:
• Authorization (check ACL) performed at open
• Returns a file handle à essentially a capability
• Subsequent read or write uses the file handle

Access Control in UNIX

25

Advantages:
• Eliminates confused deputy problems
• Natural approach for user-defined objects

Disadvantages:
• Review of permissions?
• Delegation?
• Revocation?
• Privacy?

Capabilities Roundup

26

ACLs:
For each Object:
<P1,privs1>
<P2,privs2>…

Capabilities:
<Object,privs>
held by a principal

Review rights for
object O

Easy!
Print the list.

Hard.
Need to scan all
principals’ lists.

Review rights for
principal P
across all objects

Hard.
Need to scan all
objects’ lists.

Easy!
Print the c-list.

Revocation Easy!
Delete P from O’s
list.

Kernel tracks capabilities,
invalidates on revocation.
Harder if object tracks
revocation list.

ACLs vs Capabilities

27

History of Discretionary Access Control (DAC)

28

1760+ early philosophical pioneers of private
property (Blackston, Bastiat,+)

1965 “access control lists” coined @ MIT
describing Multics (CTSS foreshadowed
ACLs) (Daley & Neumann)

1966 “capability” coined and OS supervisor
outlined @ MIT (Dennis & van Horn)

1974 early computer security: “the user gives
access rights at his own discretion” (Walter+)

1983 DoD’s Orange book coins the term
“discretionary access control”

• Protection
• Authorization: what are you permitted to do?
• Access Control Matrix

• Security
• Authentication: how do we know who you are?
• Threats and Attacks

Plan of Attack

29

Establish the identity of user/machine by
• Something you are:

retinal scan, fingerprint
• Something you have:

physical key, ticket, credit card, smart card
• Something you know:

password, secret, answers to security questions, PIN

In the case of an OS this is done during login
• OS wants to know who the user is

Authentication

30

Two-factor Authentication: authenticate based
on two independent methods
• ATM card + PIN
• password + secret Q
• password + registered cell phone

Multi-factor Authentication: two or more
independent methods
Best to combine separate categories
• 2 passwords from a same person? arguably

not independent

Multiple Factors

31

• System has 2 components:
• Enrollment:measure & store characteristics
• Identification:match with user supplied values
• What are good characteristics?

Finger length, voice, hair color, retinal pattern,
voice, blood

Pros: user carries around a good password
Cons: difficult to change password, can be subverted

Biometrics: something you are

32

Door keys have been around long
Plastic card inserted into reader associated with comp
• Also a password known to user, to protect against lost card

Magnetic stripe cards: ~140 bytes info glued to card
• Is read by terminal and sent to computer
• Info contains encrypted user password (only bank knows key)

Chip cards: have an integrated circuit
• Stored value cards: have EEPROM memory but no CPU
- Value on card can only be changed by CPU on another comp

• Smart cards: 4 MHz 8-bit CPU, 16 KB ROM, 4 KB EEPROM, 512
bytes RAM, 9600 bps comm. channel

Authentication with Physical Objects

33

New user provides server with list of Q/A pairs
• Server asks one of them at random
• Requires a long list of question answer pairs

Prove identity by computing a secret function
• User picks an algorithm, e.g. x2

• Server picks a challenge, e.g. x=7
• User sends back 49
• Should be difficult to deduce function by looking at results
In practice
• Algorithm is fixed, e.g. one-way hash, but user selects a key
• The server’s challenge is combined with user’s key to provide

input to the function
Authenticate yourself as a human:

CAPTCHA, image tasks, etc.

Challenge Response Scheme

35

Secret known only to the subject

Top 10 passwords in 2017: [SplashData]
1. 123456
2. password
3. 12345678
4. qwerty
5. 12345

16: starwars, 18: dragon, 27: jordan23

Top 20 passwords suffice to compromise 10% of accounts
[Skyhigh Networks]

Passwords

36

6. 123456789
7. letmein
8. 1234567
9. football
10. iloveyou

How does OS know that the password is correct?

Simplest implementation:
• OS keeps a file with ⟨login,password⟩ pairs
• User types password
• OS looks for a loginà password match

Goal: make this scheme as secure as possible
• display the password when being typed?

Verifying Passwords

37

1. Store username/password in a file
• Attacker only needs to read the password file
• Security of system now depends on protection of this file!

Need: perfect authorization & trusted system administrators

Storing Passwords

38

39
https://twitter.com/c_pellegrino/status/981409466242486272

https://twitter.com/c_pellegrino/status/981409466242486272

1. Store username/password in a file
• Attacker only needs to read the password file
• Security of system now depends on protection of this file!

Need: perfect authorization & trusted system administrators

2. Store login/encrypted password in file
• Access to password file ≠ access to passwords

Storing Passwords

40

Want a function f such that:
1. Easy to compute and store h(p)
2. Hard to compute p given h(p)
3. Hard to find q such that q ≠ p, h(q)==h(p)

Cryptographic hash functions to the rescue!
h(password) = encrypted-password e.g., MD5, SHA

• one-way property gives (1) and (2)
• collision resistance gives (3)

Remember: h(encrypted-password) ≠ password
h-1(encrypted-password) = password
h-1 hard to compute (hard ≈ impossible)

Hashing

41

Storing and Checking Passwords

42

==
?

login

p p’

plain text

hashed
Password File

passwd1’login1

passwd2’login2

hash
function

lookup

Authenticated!

Denied!

No

Yes

Suppose attacker obtains password file:
/etc/passwd public, known hash fn known

+ hard to invert à hard to obtain all the passwords

How else can I crack this file?

• Brute Force Attack:
- Enumerate all possible passwords p, calculate h(p) and see

if it matches an entry in the file
• Dictionary Attack
- List all the likely passwords p, calculate h(p) and check for a

match. (recall: top 20 passwords can compromise 10% of
accounts)

Hashed passwords still vulnerable

43

Password File
passwd1’login1

passwd2’login2

Rainbow Table Attack

44

Password File

login h(p)
abc123 XXXXX
abc124 XXXXX
abc125 XXXXX
abc126 XXXXX
abc127 XXXXX

abc128 XXXXX

abc129 XXXXX

abc130 XXXXX

abc131 XXXXX
abc132 XXXXX

abc133 XXXXX

abc134 XXXXX
abc135 XXXXX

abc136 XXXXX

• Pre-compute the dictionary hashes (need space,
not time), use hashed passwords as key

• Quick attack: look up each hashed password 1-by-1

h(p) p
XXXXX 123456

XXXXX password

XXXXX 12345678

XXXXX qwerty

XXXXX 12345

XXXXX 123456789

XXXXX letmein

XXXXX 1234567

XXXXX football

XXXXX iloveyou

abc123’s
password is qwerty

“Rainbow Table”

Vulnerabilities:
• single dictionary compromises all users
• passwords chosen from small space

Countermeasure: include a unique system-
chosen nonce as part of each user's password
• make every user's stored hashed password

different, even if they chose the same password
• now passwords come from a larger space

Each user has: login, unique salt s, passwd p
System stores: login, s, H(s, p)

Salting

46

• If the hacker guesses qwerty, has to try:
h(0001qwerty), h(0002qwerty), h(0003qwerty) …

• UNIX adds 12-bit of salt
• Also, passwords should be secure:
• Length, case, digits, not from dictionary
• Can be imposed by the OS! This has its own tradeoffs

Salting Example

47

login salt h(p||s)
abc123 4238 h(423812345)
abc124 2918 h(2918password)
abc125 6902 h(6902LordByron)
abc126 1694 h(1694qwerty)
abc127 1092 h(109212345)
abc128 9763 h(97636%%TaeFF)
abc129 2020 h(2020letmein)

