File Systems

CS 4410
Operating Systems

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[R. Agarwal, L. Alvisi, A. Bracy, M. George, Kurose, Ross, E. Sirer, R. Van Renesse]

The abstraction stack

/O systems are accessed

. Application
through a series of - |
] Library
layered abstractions |
«\VQ ; File System
eV
Cﬂc" (0’0(\ Block Cache
Q& kot >
A Block Device Interface
eﬂ'\c,@ < Device Driver
\ (Jc,?f’% Memory-mapped /O,
¥ | DMA, Interrupts
Physical Device

The Block Cache

Application

Library

a cache for the disk File System
caches recently read blocks
buffers recently written blocks
serves as synchronization
point (ensures a block is only
fetched once)

* Big part of A4

More Layers (not a 4410 focus)

e allows data to beread or

) o . Application
written in fixed-sized blocks Libra
* uniform interface to disparate g
devices File System
 translate between OS Block Cache

abstractions and hw-specific

details of I/O devices -gr\ored<
\

\0 P

* Control registers, bulk data
transfer, OS notifications

Physical Device

Where shall we store our data?
Process Memory? (why is this a bad idea?)

File Systems 101

Long-term Information Storage Needs
 large amounts of information

* information must survive processes

* need concurrent access to multiple processes

Solution: the File System Abstraction
* Presents applications w/ persistent, named data

* Two main components:
* Files
* Directories

The File

* File: a named collection of data

* has two parts
* data - what a user or application putsinit

— array of untyped bytes
* metadata - information added and
managed by the OS

- size, owner, security info, modification time

First things first: Name the File!

1. Files are abstracted unit of information
2. Don’t care exactly where on disk the file is

= Files have human readable names
* file given name upon creation
* use the name to access the file

Name + Extension

Naming Conventions
* Some things OS dependent:
Windows not case sensitive, UNIX is
* Some things common:
Usually ok up to 255 characters

File Extensions, OS dependent:
* Windows:

— attaches meaning to extensions

— associates applications to extensions
* UNIX:

- extensions not enforced by OS

- Some apps might insist upon them (.c, .h, .0, .s, for C compiler)
9

Directory

Directory: provides names for files
* alist of human readable names
* amapping from each name to a specific
underlying file or directory

File directory

Number index . Storage
Name: -h_' structure Block
, 871
foo. txt ;csffzﬁz]

foo.txt 871

Path Names

Absolute: path of file from the root directory
/home/ada/projects/babbage.txt

Relative: path from the current working
directory (current work dir stored in process’ PCB)

2 special entries in each UNIX directory:
“.” current dir
“..” for parent
To access a file:
* Go tothe folder where file resides —OR—
* Specify the path where the file is >

Directories

OS uses path name to find directory 1l il
Example: /home/tom/foo.txt atlt Thes

) S S

File2 | bin 737 <+
“I” 1 usr 924

home 158
Y SR S——

s f N

............................

~->Fijle 158 | mike 682

“Thome” | ada 818
tom 830
N) S——

.
. 4 N\
............................

> File 830 | music 320
“Thome/tom” | work 219

Directory: foo.txt 871--|- !
maps file name to attributes & location 5333334"#'i'ié"é'%'{§ |

2 options: “Ihome/tom/0o Xt | brem fon

» directory stores attributes Juped

* files’ attributes stored elsewhere Lazy dog. [{95

Basic File System Operations

* Create afile

* Write to a file

* Read from a file

e Seek to somewhere in a file
e Delete a file

* Truncate a file

13

How shall we implement this?

Just map keys (file name) to values (block
number on disk)?

14

Challenges for File System Designers

Performance: despite limitations of disks
* leverage spatial locality

Flexibility: need jacks-of-all-trades, diverse
workloads, not just FS for X

Persistence: maintain/update user data +
internal data structures on persistent storage
devices

Reliability: must store data for long periods of
time, despite OS crashes or HW malfunctions

15

Implementation Basics

Directories

* file name = file number
Index structures

* file number = block

Free space maps
 find a free block; better: find a free block nearby

Locality heuristics
* policies enabled by above mechanisms
— group directories
- make writes sequential
— defragment

16

File System Properties

Most files are small
* need strong support for small files
* block size can’t be too big

Some files are very large
* must allow large files
* large file access should be reasonably
efficient

17

Storing Files

Files can be allocated in different ways:

* Contiguous allocation
All bytes together, in order
* Linked Structure
Each block points to the next block
* Indexed Structure
Index block points to many other blocks

D

?is
Which is best? Vi)

_

* For sequential access? Random access? '\!
 Large files? Small files? Mixed?

19

Contiguous Allocation

All bytes together, in order

+ Simple: state required per file: start block & size
+ Efficient: entire file can be read with one seek

- Fragmentation: external is bigger problem

- Usability: user needs to know size of file

filel file2 file3 filed4d file5S

Used in CD-ROMs, DVDs

20

Linked List Allocation

Each file is stored as linked list of blocks
* First word of each block points to next block
 Rest of disk block is file data

+ Space Utilization: no space lost to external fragmentation
+ Simple: only need to store 15t block of each file

- Performance: random access is slow

- Space Utilization: overhead of pointers

File A

Physical
Block

21

File Allocation Table (FAT) FS

late 70’
Microsoft File Allocation Table late 70's]

 originally: MS-DOS, early version of Windows
* today: still widely used (e.g., CD-ROMs, thumb drives,

camera cards)
* FAT-32, supports 228 blocks and files of 23-1 bytes

File table:

* Linear map of all blocks on disk

 Each file alinked list of blocks
data

decoupleOl
phySICa“y

g —

32 bit entries

22

FAT File System

e 1 entry per block
e EOF for last block

e O indicates free block
e usually uses a simple
allocation strategy (e.g.

next-fit)

e directory entry maps
name to FAT index

Directory
bart.txt 9
maggie.txt| 12

0o N o oo b WO N = O

ND 4 A a4 a4 a4 4a 4a a4 o=
O © 0o N O o W DD - O ©

m |

-

.............

olococ00oc oo
T1

Data Blocks

File 9 Block 3

File 9 Block O

File 9 Block 1

File 9 Block 2

File12 Block 0

File 12 Block 1

File 9 Block 4

File 9
File 12

23

L N\,

()

FAT Directory Structure music 320

Folder: a file with 32-byte entries fooxt 7

Each Entry:
* 8 byte name + 3 byte extension (ASCII)
* creation date and time

* last modification date and time

* first block in the file (index into FAT)

size of the file
Long and Unicode file names take up
multiple entries

24

How is FAT Good?

+ Simple: state required per file: start block only
+ Widely supported

+ No external fragmentation

+ block used only for data

25

How is FAT Bad?

* Poor locality

* Many file seeks unless entire FAT in memory:
Example: 1TB (2*° bytes) disk, 4KB (2!?) block
size, FAT has 256 million (228) entries (!)
4 bytes per entry = 1GB (23°) of main
memory required for FS (a sizeable overhead)

 Poorrandom access

* Limited metadata

e Limited access control

e Limitations on volume and file size

* No support for reliability techniques

26

Fast File System (FFS)
UNIX Fast File System

Tree-based, multi-level index

...butfirst... A4

[mid 80’s]

27

FFS Superblock

ldentifies file system’s key parameters:
* type
* blocksize
* inode array location and size
(or analogous structure for other FSs)
* |ocation of free list

blocknumber 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I !

super i-node Remaining blocks
block blocks

Inode Array

FFS I'NOdeS Inode

* inode array

- Analogous to FAT table
* inode / %

DP

File Metadata

DP

— Metadata ;_ o

DP

- 12 data pointers o

DP

- 3 indirect pointe -

Direct Pointer |-
Indirect Pointer |

.| Dbl. Indirect Ptr. |-
~| Tripl. Indirect Ptr. |-

block number o 1 3 4 5 6 7
blocks:

I I
superblock i-node blocks Remaining blocks

FFS: Index Structures

Inode Array Triple Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
.. >
... >
File Metadata
Direct Pointer T >
DP O N
DP :
DP e s[
DP - S ,
DP
DP
DP P
- L o[N I >
DP A :
DP :
Diroot Pointer |-t | 0 e N I PP >
Indirect Pointer : PP N I PO N I TS >
.| Dbl Indirect Pr. |-
TripI. Indirect Ptr. [eeeees > ::::::::: erreeeeeneeend > e >
................... N
SV R IO >

What else is in an inode?

+ Type ~
. . e
- ordmary file Metadata
- directory
- Symbo[ic link Direct Pointer
- special device DD,F:
« Size of the file (in #bytes) P
« #linksto thei-node DP
« Owner (userid and group id) >
« Protection bits DP
« Times: creation, last accessed, =
last modified Direct Pointer
Indirect Pointer |-
Dbl. Indirect Ptr. |-
Tripl. Indirect Ptr. |

FFS: Index Structures

Inode Array

Triple Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks

File Metadata fromtheinOde i

D|rect P0|nter s g é ...).

DP e ,
DP 1K L]

op e iii**if n=1: 4MB

DP 2(nx10)y g K): — .

DP

DP éwith n levels of indirection

DP

= R AW

Indirect Pointer

Assume: blocks are 4K,
block references are 4 bytes

4 Characteristics of FFS

1. Tree Structure
 efficiently find any block of a file
2. High Degree (or fan out)
* minimizes number of seeks
* supports sequential reads & writes
3. Fixed Structure
* implementation simplicity
4. Asymmetric
* not all data blocks are at the same level

* supports large
» small files don’t pay large overheads

33

Small Files in FFS

Inode Array

Data
Inode Blocks
| direct
o pointers
L What if fixed 3 levels instead?
L * 4 KB file consumes ~16 KB
i (4 KB data + 3 levels of 4KB
L indirect blocks + inode)
= * reading file requires reading 5
blocks to traverse tree 34

Sparse Files in FFS Example:

Inode 2 x4 KB bocks: 1 @ offset 0

1 @ offset 23¢
Triple Double

e Metadat Indirect Indirect Indirect Data

ile Metadata Blocks Blocks Blocks Blocks
NIL
NIL File size (1s -1gGh):1.1GB
" Space consumed (du -hs): 16 KB
NIL
NIL Read from hole: 0-filled buffer created
NIL .
NIL Write to hole: storage blocks for data
NIL + required indirect blocks allocated
NIL
NIL
NIL

Dbl. Indirect PIr. |--c-oeceeeeeememmmiiiiin Mo e Y [PP >

NIL =

FFS: Steps to reading /foo/bar/baz
Read & Open:

(1) inode #2 (root always has inumber 2), find root’s blocknum (912)
(2) rootdirectory (in block 912), find foo’s inumber (31)
(3) inode #31, find foo’s blocknum (194)
(4) foo (in block 194), find bar’s inumber (73)
(5) inodg #73, find bar’§ blocknu.m (991) Caching allows
(6) bar (in block 991), find baz’s inumber (40) .
(7) inode #40, find data blocks (302, 913, 301) first fe W steps 1o
(8) data blocks (302,913, 301) be skipped
‘ ' 4 j i j 8 6
01 0/ : fie 23 under gndhea?[‘ bin 47]nd bI baz 40
[far 81|, | stand foo 31|remembe 30
i“ lbar 73~ T [fereets flusr 98|5hd 1o it 87
2 31 /3 E 194 301 302 912 913 991

inodes data blocks

File System Consistency

System crashes before modified files written back?
* LeadstoinconsistencyinFS
* fsck (UNIX) & scandisk (Windows) check FS
consistency
* (also gets called in A4)

Algorithm:
* Build table with info about each block
— initially each block is unknown except superblock
* Scan through the inodes and the freelist
— Keep track in the table

- If block already in table, note error

* Finally, see if all blocks have been visited
40

Check Directory System

Use a per-file table instead of per-block

Parse entire directory structure, start at root
* Increment counter for each file you encounter
* Thisvalue can be>1 due to hard links
» Symbolic links are ignored
Compare table counts w/link counts in i-node
* |fi-node count > our directory count (wastes
space)
* |fi-node count <our directory count
(catastrophic)

41

Inconsistent FS Examples

©123456789ABCDEF

Consistent i1iftei111ee121@ inuse

©010100001100011 free ljist

©123456789ABCDETF

Missing Block 2 1ieHeTrTepLTzp @ inuse

(add it to the free list) 0P00100001100011 free list

©123456789ABCDEF

Duplicate Block 4 in Free IIIIIIIIIIIIIIII in use

List (rebuild free list) 0102000011000 11 free list

Duplicate Block4inData °1234°567895ABCDEF

List (copy block and add it IIIIIIIIIIIII.I. n use

. P010100001100011 i
to one file) free list

