Disks and RAID

(Chapter 12, 14.2)

CS 4410
Operating Systems

CornellCIS
COMPUTING AND INFORMATION SCIENCE
[R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse]

Storage Devices

- Magnetic disks
- Storage that rarely becomes corrupted
- Large capacity at low cost
- Block level random access
- Slow performance for random access
- Better performance for streaming access
- Flash memory
- Storage that rarely becomes corrupted
- Capacity at intermediate cost (50x disk)
- Block level random access
- Good performance for reads; worse for random writes

Magnetic Disks are 60 years old!

THAT WAS THEN

- 13th September 1956
- The IBM RAMAC 350
- Total Storage $=5$ million characters (just under 5 MB) • easily up to 1 TB

RAM (Memory) vs. HDD (Disk), 2018

	RAM	HDD
Typical Size	8 GB	1 TB
Cost	\$10 per GB	\$0.05 per GB
Power	3 W	2.5 W
Read Latency	15 ns	15 ms
Read Speed (Sequential)	$8000 \mathrm{MB} / \mathrm{s}$	$175 \mathrm{MB} / \mathrm{s}$
Write Speed (Sequential)	$10000 \mathrm{MB} / \mathrm{s}$	$150 \mathrm{MB} / \mathrm{s}$
Read/Write Granularity	word	sector
Power Reliance	volatile	non-volatile

[C. Tan, buildcomputers.net, codecapsule.com, crucial.com, wikipedia]

Reading Must specity:

- cylinder \# (distance from spindle)
- surface \#
- sector \#
- transfer size
- memory address

Disk Tracks

~ 1 micron wide (1000 nm)

- Wavelength of light is ~ 0.5 micron
- Resolution of human eye: 50 microns
- 100K tracks on a typical 2.5 " disk

Track length varies across disk

- Outside:
- More sectors per track
- Higher bandwidth
- Most of disk area in outer regions

Disk overheads

Disk Latency $=$ Seek Time + Rotation Time + Transfer Time

- Seek: to get to the track (5-15 millisecs (ms))
- Rotational Latency: to get to the sector (4-8 millisecs (ms)) (on average, only need to wait half a rotation)
- Transfer: get bits off the disk (25-50 microsecs ($\mu \mathrm{s}$)

Disk Scheduling
 Objective: minimize seek time

Context: a queue of cylinder numbers (\#0-199) Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Metric: how many cylinders traversed?

Disk Scheduling: FIFO

- Schedule disk operations in order they arrive
- Downsides?

FIFO Schedule?
 Total head movement?

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Disk Scheduling: Shortest Seek Time First

- Select request with minimum seek time from current head position
- A form of Shortest Job First (SJF) scheduling
- Not optimal: suppose cluster of requests at far end of disk \rightarrow starvation!

SSTF Schedule?
 Total head movement?

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Disk Scheduling: SCAN

 Elevator Algorithm:- arm starts at one end of disk
- moves to other end, servicing requests
- movement reversed @ end of disk
- repeat

SCAN Schedule?
Total head movement?

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Disk Scheduling: C-SCAN

 Circular list treatment:- head moves from one end to other Clll

C-SCAN Schedule? Total Head movement?(?)

 Head pointer @ 53Queue: 98, 183, 37, 122, 14, 124, 65, 67

RAM vs. HDD vs Flash, 2018

	RAM	HDD	Flash
Typical Size	8 GB	1 TB	250 GB
Cost	$\$ 10$ per GB	$\$ 0.05$ per GB	$\$ 0.32 \mathrm{per} \mathrm{GB}$
Power	3 W	2.5 W	1.5 W
Read Latency	15 ns	15 ms	$30 \mu \mathrm{~s}$
Read Speed (Seq.)	$8000 \mathrm{MB} / \mathrm{s}$	$175 \mathrm{MB} / \mathrm{s}$	$550 \mathrm{MB} / \mathrm{s}$
Write Speed (Seq.)	$10000 \mathrm{MB} / \mathrm{s}$	$150 \mathrm{MB} / \mathrm{s}$	$500 \mathrm{MB} / \mathrm{s}$
Read/Write Granularity	word	sector	page*
Power Reliance	volatile	non-volatile	non-volatile
Write Endurance	$*$	$\star *$	100 TB

[C. Tan, buildcomputers.net, codecapsule.com, crucial.com, wikipedia]

Solid State Drives (Flash) Most SSDs based on NAND-flash

- retains its state for months to years without power

Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Floating Gate MOSFET (FGMOS)

NAND Flash

Charge is stored in Floating Gate (can have Single and Multi-Leve Cells)

Floating Gate MOSFET (FGMOS)
https://flashdba.com/2015/01/09/understanding-flash-floating-gates-and-wear/

Flash Operations

- Erase block: sets each cell to "1"

- erase granularity = "erasure block" = 128-512 KB
- time: several ms
- Write page: can only write erased pages
- write granularity $=1$ page $=2-4 \mathrm{KBytes}$
- time: 10s of ms
- Read page:
- read granularity $=1$ page $=2-4$ KBytes
- time: 10s of ms

Flash Limitations

- can't write 1 byte/word (must write whole blocks)
- limited \# of erase cycles per block (memory wear)
- $10^{3}-10^{6}$ erases and the cell wears out
- reads can "disturb" nearby words and overwrite them with garbage
- Lots of techniques to compensate:
- error correcting codes
- bad page/erasure block management
- wear leveling: trying to distribute erasures across the entire driver

Flash Translation Layer

Flash device firmware maps logical page \# to a physical location

- Garbage collect erasure block by copying live pages to new location, then erase
- More efficient if blocks stored at same time are deleted at same time (e.g., keep blocks of a file together)
- Wear-levelling: only write each physical page a limited number of times
- Remap pages that no longer work (sector sparing)

Transparent to the device user

What do we want from storage?

- Fast: data is there when you want it
- Reliable: data fetched is what you stored
- Affordable: won’t break the bank

Enter: Redundant Array of Inexpensive Disks (RAID)

- In industry, "I" is for "Independent"
- The alternative is SLED, single large expensive disk
- RAID + RAID controller looks just like SLED to computer (yay, abstraction!)

RAID-0

Files striped across disks + Fast

+ Cheap
- Unreliable

Disk 1

stripe 1
stripe 3
stripe 5
stripe 7
stripe 9
stripe 11
stripe 13
stripe 15

Failure Cases

(1) Isolated Disk Sectors ($1+$ sectors down, rest OK) Permanent: physical malfunction (magnetic coating, scratches, contaminants) Transient: data corrupted but new data can be successfully written to / read from sector
(2) Entire Device Failure

- Damage to disk head, electronic failure, wear out
- Detected by device driver, accesses return error codes
- Annual failure rates or Mean Time To Failure (MTTF)

Striping and Reliability

Striping reduces reliability

- More disks \rightarrow higher probability of some disk failing
- N disks: $1 / \mathrm{N}^{\text {th }}$ mean time between failures of 1 disk

What can we do to improve Disk Reliability?
Hint \#1: When CPUs stopped being reliable, we also did this...

RAID-1

Disks Mirrored: data written in 2 places

+ Reliable
+ Fast
- Expensive

Example: Google File System replicates data across multiple disks

RAID-2

bit-level striping with ECC codes

- 7 disk arms synchronized, move in unison

- Complicated controller (\rightarrow very unpopular)
- Detect \& Correct 1 error with no performance degradation + Reliable
- Expensive
parity $1=3 \oplus 5 \bigoplus 7$ (all disks whose \# has 1 in LSB, xx1) parity $2=3 \oplus 6 \bigoplus 7$ (all disks whose $\#$ has 1 in $2^{\text {nd }}$ bit, $x 1 x$) parity $4=5 \oplus 6 \bigoplus 7$ (all disks whose \# has 1 in MSB, 1 xx)

RAID-2 Generating Parity

parity $1=3 \oplus 5 \oplus 7$ (all disks whose \# has 1 in LSB, xx1)

$$
=\mathrm{a} \oplus \mathrm{~b} \oplus \mathrm{~d}=1 \oplus 1 \oplus 1=\mathbf{1}
$$

parity $2=3 \oplus 6 \bigoplus 7$ (all disks whose \# has 1 in $2^{\text {nd }}$ bit, $x 1 x$)

$$
=\mathrm{a} \oplus \mathrm{c} \oplus \mathrm{~d}=1 \oplus 0 \oplus 1=\mathbf{0}
$$

parity $4=5 \oplus 6 \bigoplus 7$ (all disks whose \# has 1 in MSB, 1 xx)

$$
=b \oplus c \oplus d=1 \oplus 0 \oplus 1=0
$$

RAID-2 Detect and Correct

I flipped a bit. Which one?
parity $1=3 \bigoplus 5 \bigoplus 7$ (all disks whose \# has 1 in LSB, xx1)

$$
=\mathrm{a} \bigoplus \mathrm{~b} \bigoplus \mathrm{~d}=1 \bigoplus 1 \bigoplus 0=0<\text { problem }
$$

parity $2=3 \bigoplus 6 \bigoplus 7$ (all disks whose \# has 1 in $2^{\text {nd }}$ bit, $x 1 x$)
$=a \bigoplus c \bigoplus d=1 \bigoplus 0 \bigoplus 0=1 \leftarrow$ problem
parity $4=5 \bigoplus 6 \bigoplus 7$ (all disks whose \# has 1 in MSB, $1 x x$) $=\mathrm{b} \oplus \mathrm{c} \oplus \mathrm{d}=1 \oplus 0 \oplus 0=1 \leftarrow$ problem

Problem @ xx1, x1x, 1xx \rightarrow 111, d was flipped

2 more rarely-used RAIDS

RAID-3: byte-level striping + parity disk

- read accesses all data disks
- write accesses all data disks + parity disk
- On disk failure: read parity disk, compute missing data RAID-4: block-level striping + parity disk
+ better spatial locality for disk access
+ Cheap
- Slow Writes
- Unreliable

parity disk is write bottleneck and wears out faster

A word about Granularity
Bit-level \rightarrow byte-level \rightarrow block level
fine-grained: stripe a file across all disks

+ high throughput for the file
- wasted disk seek time
- limits to transfer of 1 file at a time
coarse-grained: stripe a file over a few disks
- limits throughput for 1 file
+ better use of spatial locality (for disk seek)
+ allows more parallel file access

RAID 5: Rotating Parity w/Striping + Reliable
 + Fast
 + Affordable

Disk 0
parity 0-3
data 4
data 8
data 12
data 16

Disk 1
data 0
parity 4-7
data 9
data 13
data 17

Disk 2
data 1
data 5
parity 8-11
data 14
data 18

Disk 3
data 2
data 6
data 10
parity 12 -15
data 3
data 19
data 7
data 11
data 15

