
Deadlocks:
Detection & Avoidance

(Chapter 6)
CS 4410

Operating Systems

The slides are the product of many rounds of teaching CS 4410
by Professors Agarwal, Bracy, George, Sirer, and Van Renesse.

There are non-shared computer resources
• 1+ instances (printers, semaphores, CPU, etc.)

Processes need access to these resources
• Acquire resource
• If resource is available, access is granted
• If not available, the process is blocked

• Use resource
• Release resource

Undesirable scenario:
• Process A acquires resource 1, waits for resource 2
• Process B acquires resource 2, waits for resource 1

➛ Deadlock!

System Model

2

Classic Deadlock

3

Example 1: Semaphores

4

semaphore:
file_mutex = 1 /* protects file resource */
printer_mutex = 1 /* protects printer resource */

{
/* initial compute */

P(file_mutex)
P(printer_mutex)

/* use resources */

V(printer_mutex)
V(file_mutex)

}

{
/* initial compute */

P(printer_mutex)
P(file_mutex)

/* use resources */

V(file_mutex)
V(printer_mutex)

}

Process B code:Process A code:

Example 2: Dining Philosophers

5

class Philosopher:
chopsticks[N] = [Semaphore(1),…]

def __init__(mynum)
self.id = mynum

def eat():
right = (self.id+1) % N
left = (self.id-1+N) % N
while True:

P(left)
P(right)
om nom nom
V(right)
V(left)

• Philosophers go out for Chinese food
• Need exclusive access to 2 chopsticks to eat food

Starvation: thread waits indefinitely

Deadlock: circular waiting for resources
Deadlock ➛ starvation, but not vice versa

Subject to deadlock ≠ will deadlock
➛ Testing is not the solution
➛ System must be deadlock-free by design

Starvation vs. Deadlock

6

Necessary conditions for deadlock to exist:
(1) Mutual Exclusion / Bounded Resources

≥ 1 resource must be held in non-sharable mode
(2) Hold and wait

∃ a process holding 1 resource & waiting for another
(3) No preemption

Resources cannot be preempted
(4) Circular wait
∃ a set of processes {P1, P2, … PN}, such that
P1 is waiting for P2, P2 for P3, …. and PN for P1

ALL FOUR must hold for deadlock to occur.
Note: it’s not just about locks!

Four Conditions for Deadlock

7[Coffman 1971]

Truck A has to wait for Truck B to move
Is this a Deadlock?

8

1. Mutual Exclusion
2. Hold & Wait
3. No Preemption
4. Circular Wait

Deadlock?

Gridlock
Is this a Deadlock?

9

1. Mutual Exclusion
2. Hold & Wait
3. No Preemption
4. Circular Wait

Deadlock?

Gridlock
Is this a Deadlock?

10

1. Mutual Exclusion
2. Hold & Wait
3. No Preemption
4. Circular Wait

Deadlock?

Gridlock
Is this a Deadlock?

11

1. Mutual Exclusion
2. Hold & Wait
3. No Preemption
4. Circular Wait

Deadlock?

Create a Wait-For Graph
• 1 Node per Process
• 1 Edge per Waiting Process, P

(from P to the process it’s waiting for)

Note: graph holds for a single instance in time

Cycles in graph indicate deadlock

Deadlock Detection

12

31

2

Find a node with no outgoing edges
• Erase node
• Erase any edges coming into it

Intuition: this was a process waiting on nothing. It
will eventually finish, and anyone waiting on it
will no longer be waiting.

Erase whole graph ⬌ graph has no cycles
Graph remains ⬌ deadlock
This is a graph reduction algorithm.

Testing for cycles (= deadlock)

13

Graph can be fully reduced, hence there was no
deadlock at the time the graph was drawn.
(Obviously, things could change later!)

Graph Reduction: Example 1

14

8

6 5

0

3

49

10

11 7

12

1

2

Find node w/o outgoing edges
Erase node
Erase edges coming into it

No node with no outgoing edges…
Irreducible graph, contains a cycle

(only some processes are in the cycle)
➛ deadlock

Graph Reduction: Example 2

15

3

10

11

7

12

Does order of reduction matter?

Answer: No.
Explanation: an unchosen candidate at one
step remains a candidate for later steps.
Eventually—regardless of order—every node
will be reduced.

Question #1

16

If a system is deadlocked, could the deadlock go
away on its own?

Answer: No, unless someone kills one of the threads or
something causes a process to release a resource.
Explanation: Many real systems put time limits on
“waiting” precisely for this reason. When a process gets
a timeout exception, it gives up waiting; this can
eliminate the deadlock.
Process may be forced to terminate itself because often,
if a process can’t get what it needs, there are no other
options available!

Question #2

17

Suppose a system isn’t deadlocked at time T.
Can we assume it will still be free of deadlock
at time T+1?

Answer: No
Explanation: the very next thing it might do
is to run some process that will request a
resource…

… establishing a cyclic wait
… and causing deadlock

Question #3

18

Let’s not deadlock, okay?
• Deadlock Prevention: make it impossible
• Prevent 1 of the 4 necessary conditions from

arising…. … disaster averted!

Proactive Responses to Deadlocks

19

#1: Mutual exclusion / Bounded Resources
• Make resources sharable without locks?
• Make more resources available?
• Example: reserve space in TCB for

thread to be inserted into a waiting list
or the ready list
• Not always possible (e.g., printers)

Deadlock Prevention: Negate 1 of 4

20

#2: Hold and wait
Don’t hold resources when waiting for another
• Re-write code:

• Request all resources before execution begins
- Processes don’t know what they need ahead of time
- Starvation (if waiting on many popular resources)
- Low utilization (need resource only for a bit)

Optimization: Release all resources before requesting
anything new? Still has last two problems

Deadlock Prevention: Negate 1 of 4

21

Module:: foo() {
lock.acquire();
doSomeStuff();
otherModule->bar();
doOtherStuff();
lock.release(); }

Module:: foo() {
doSomeStuff();
otherModule->bar();
doOtherStuff();

}

have these 2 fns acquire & release

#3: No preemption
Allow runtime system to pre-empt:

1. Requesting processes’ resources if all not available
2. Resources of waiting processes to satisfy request

Good when easy to save/restore state of resource
• CPU registers
• memory virtualization (page memory to disk,

maybe even page tables)

Deadlock Prevention: Negate 1 of 4

22

#4: Circular Wait
• Single lock for entire system?
• Impose partial ordering on resources,

request in order
Intuition: Cycle requires an edge from low to
high, and from high to low numbered node, or
to same node

Deadlock Prevention: Negate 1 of 4

23

1

2
3

4 12 1

Preventing Dining Philosophers Deadlock?

24

1. Bounded Resources
2. Hold & Wait
3. No Pre-emption
4. Circular Wait

Can we prevent one of
these conditions?
Ideas?

class Philosopher:
chopsticks[N] = [Semaphore(1),…]

def __init__(mynum)
self.id = mynum

def eat():
right = (self.id+1) % N
left = (self.id-1+N) % N
while True:

P(left)
P(right)
om nom nom
V(right)
V(left)

Let’s not deadlock, okay?
• Deadlock Prevention: make it impossible
• Prevent 1 of the 4 necessary conditions from

arising…. … disaster averted!
• Deadlock Avoidance: make it not happen
• Think before you act

Proactive Responses to Deadlocks

25

How do cars do it?
•Try not to block an intersection
•Don’t drive into the intersection if you can see

that you’ll be stuck there.

Why does this work?
•Prevents a wait-for relationship
•Cars won’t take up a resource if they see they

won’t be able to acquire the next one…

Deadlock Avoidance

26

Safe state:
• For any possible sequence of future resource requests,

it is possible to eventually grant all requests
• May require waiting even when resources are

available!
Unsafe state:
• Some sequence of resource requests can result in

deadlock
Doomed state:
• All possible computations lead to deadlock

Deadlocked state:
• System has at least one deadlock

Deadlock Dynamics

27

Possible System States

28

Safe

Unsafe
Deadlock

• A state is said to be safe, if there exists a sequence
of processes [P1, P2,…, Pn] such that for each Pi the
resources that Pi can still request can be satisfied by
the currently available resources plus the resources
held by all Pj where j < i

• State is safe b/c OS can definitely avoid deadlock
•block new requests until safe order is executed

• Avoids circular wait condition from ever happening
• Process waits until safe state is guaranteed

Safe State

29

Suppose: 12 tape drives and 3 processes: p0, p1, and p2

Current state is safe because a safe sequence exists: [p1, p0, p2]
- p1 can complete with remaining resources
- p0 can complete with remaining+p1
- p2 can complete with remaining+p1+p0

What if p2 requests 1 drive? Grant or not?

Safe State Example

30

max
need

current
usage

could still
ask for

p0 10 5 5
p1 4 2 2
p2 9 2 7

3 drives remain

• from 10,000 feet:
• Process declares its worst-case needs, asks

for what it “really” needs, a little at a time
• Algorithm decides when to grant requests
- Build a graph assuming request granted
-Reducible? yes: grant request, no: wait

Problems:
• Fixed number of processes
•Need worst-case needs ahead of time
• Expensive

Banker’s Algorithm

31

If neither avoidance or prevention is
implemented, deadlocks can (and will)
occur. Now what?

Detect & Recover

Reactive Responses to Deadlocks

32

• Track resource allocation (who has what)
• Track pending requests (who’s waiting for what)

When should we run this?
• For each request?
• After each unsatisfiable request?
• Hourly?
• Once CPU utilization drops below a threshold?
• Some combination of these?

Deadlock Detection

33

Blue screen & reboot?

Kill one/all deadlocked processes
• Pick a victim
• Terminate
• Repeat if needed

Preempt resource/processes till deadlock broken
• Pick a victim (# resources held, execution time)
• Rollback (partial or total, not always possible)
• Starve (prevent process from being executed

Deadlock Recovery

34

Prevent
• Negate one of the four necessary conditions.
Avoid
• Schedule processes really carefully (?)
Detect
• Determine if a deadlock has occurred
Recover

• Kill or rollback

Summary

35

