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There are non-shared computer resources
• 1+ instances (printers, semaphores, CPU, etc.) 

Processes need access to these resources
• Acquire resource
• If resource is available, access is granted
• If not available, the process is blocked

• Use resource
• Release resource

Undesirable scenario:
• Process A acquires resource 1, waits for resource 2
• Process B acquires resource 2, waits for resource 1

➛ Deadlock!

System Model
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Classic Deadlock
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Example 1: Semaphores
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semaphore: 
file_mutex = 1    /* protects file resource */
printer_mutex = 1  /* protects printer resource */

{
/* initial compute */

P(file_mutex)
P(printer_mutex)

/* use resources */

V(printer_mutex)
V(file_mutex)

}

{
/* initial compute */

P(printer_mutex)
P(file_mutex)

/* use resources */

V(file_mutex)
V(printer_mutex)

}

Process B code:Process A code:



Example 2: Dining Philosophers
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class Philosopher:
chopsticks[N] = [Semaphore(1),…]

def __init__(mynum)
self.id = mynum

def eat():
right = (self.id+1) % N
left = (self.id-1+N) % N
while True:

P(left)
P(right)
# om nom nom
V(right)
V(left)

• Philosophers go out for Chinese food
• Need exclusive access to 2 chopsticks to eat food



Starvation: thread waits indefinitely

Deadlock: circular waiting for resources
Deadlock ➛ starvation, but not vice versa

Subject to deadlock ≠ will deadlock
➛ Testing is not the solution
➛ System must be deadlock-free by design

Starvation vs. Deadlock
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Necessary conditions for deadlock to exist:
(1) Mutual Exclusion / Bounded Resources

≥ 1 resource must be held in non-sharable mode
(2) Hold and wait

∃ a process holding 1 resource & waiting for another
(3) No preemption

Resources cannot be preempted
(4) Circular wait
∃ a set of processes {P1, P2, … PN}, such that
P1 is waiting for P2, P2 for P3, …. and PN for P1

ALL FOUR must hold for deadlock to occur.
Note: it’s not just about locks!

Four Conditions for Deadlock
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Truck A has to wait for Truck B to move
Is this a Deadlock?
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1. Mutual Exclusion
2. Hold & Wait
3. No Preemption
4. Circular Wait

Deadlock?



Gridlock
Is this a Deadlock?
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3. No Preemption
4. Circular Wait

Deadlock?



Gridlock
Is this a Deadlock?
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1. Mutual Exclusion
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Gridlock
Is this a Deadlock?
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1. Mutual Exclusion
2. Hold & Wait
3. No Preemption
4. Circular Wait

Deadlock?



Create a Wait-For Graph
• 1 Node per Process
• 1 Edge per Waiting Process, P

(from P to the process it’s waiting for)

Note: graph holds for a single instance in time

Cycles in graph indicate deadlock

Deadlock Detection
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Find a node with no outgoing edges
• Erase node
• Erase any edges coming into it

Intuition: this was a process waiting on nothing. It 
will eventually finish, and anyone waiting on it 
will no longer be waiting.

Erase whole graph ⬌ graph has no cycles
Graph remains ⬌ deadlock
This is a graph reduction algorithm.

Testing for cycles ( = deadlock)
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Graph can be fully reduced, hence there was no 
deadlock at the time the graph was drawn.
(Obviously, things could change later!)

Graph Reduction: Example 1
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Find node w/o outgoing edges
Erase node
Erase edges coming into it



No node with no outgoing edges…
Irreducible graph, contains a cycle

(only some processes are in the cycle)
➛ deadlock

Graph Reduction: Example 2
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Does order of reduction matter?

Answer: No.
Explanation: an unchosen candidate at one 
step remains a candidate for later steps. 
Eventually—regardless of order—every node 
will be reduced.

Question #1
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If a system is deadlocked, could the deadlock go 
away on its own?

Answer: No, unless someone kills one of the threads or 
something causes a process to release a resource.
Explanation: Many real systems put time limits on 
“waiting” precisely for this reason.  When a process gets 
a timeout exception, it gives up waiting; this can 
eliminate the deadlock. 
Process may be forced to terminate itself because often, 
if a process can’t get what it needs, there are no other 
options available!

Question #2
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Suppose a system isn’t deadlocked at time T. 
Can we assume it will still be free of deadlock 
at time T+1?

Answer: No
Explanation: the very next thing it might do 
is to run some process that will request a 
resource… 

… establishing a cyclic wait
… and causing deadlock

Question #3
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Let’s not deadlock, okay?
• Deadlock Prevention: make it impossible
• Prevent 1 of the 4 necessary conditions from 

arising….  … disaster averted!

Proactive Responses to Deadlocks
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#1: Mutual exclusion / Bounded Resources
• Make resources sharable without locks?
• Make more resources available?
• Example: reserve space in TCB for 

thread to be inserted into a waiting list 
or the ready list
• Not always possible (e.g., printers)

Deadlock Prevention: Negate 1 of 4

20



#2: Hold and wait
Don’t hold resources when waiting for another
• Re-write code:

• Request all resources before execution begins
- Processes don’t know what they need ahead of time
- Starvation (if waiting on many popular resources)
- Low utilization (need resource only for a bit)

Optimization: Release all resources before requesting 
anything new?  Still has last two problems 

Deadlock Prevention: Negate 1 of 4
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Module:: foo() {
lock.acquire();
doSomeStuff();
otherModule->bar();
doOtherStuff();
lock.release(); } 

Module:: foo() {
doSomeStuff();
otherModule->bar();
doOtherStuff(); 

}

have these 2 fns acquire & release



#3: No preemption
Allow runtime system to pre-empt:

1. Requesting processes’ resources if all not available
2. Resources of waiting processes to satisfy request

Good when easy to save/restore state of resource
• CPU registers
• memory virtualization (page memory to disk, 

maybe even page tables) 

Deadlock Prevention: Negate 1 of 4
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#4: Circular Wait
• Single lock for entire system?
• Impose partial ordering on resources, 

request in order 
Intuition: Cycle requires an edge from low to 
high, and from high to low numbered node, or 
to same node

Deadlock Prevention: Negate 1 of 4
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Preventing Dining Philosophers Deadlock?
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1. Bounded Resources
2. Hold & Wait
3. No Pre-emption
4. Circular Wait

Can we prevent one of 
these conditions?
Ideas?

class Philosopher:
chopsticks[N] = [Semaphore(1),…]

def __init__(mynum)
self.id = mynum

def eat():
right = (self.id+1) % N
left = (self.id-1+N) % N
while True:

P(left)
P(right)
# om nom nom
V(right)
V(left)



Let’s not deadlock, okay?
• Deadlock Prevention: make it impossible
• Prevent 1 of the 4 necessary conditions from 

arising….  … disaster averted!
• Deadlock Avoidance: make it not happen
• Think before you act

Proactive Responses to Deadlocks
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How do cars do it?
•Try not to block an intersection
•Don’t drive into the intersection if you can see 

that you’ll be stuck there.

Why does this work?
•Prevents a wait-for relationship
•Cars won’t take up a resource if they see they 

won’t be able to acquire the next one…

Deadlock Avoidance
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Safe state:
• For any possible sequence of future resource requests, 

it is possible to eventually grant all requests
• May require waiting even when resources are 

available!
Unsafe state:
• Some sequence of resource requests can result in 

deadlock
Doomed state:
• All possible computations lead to deadlock

Deadlocked state:
• System has at least one deadlock

Deadlock Dynamics
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Possible System States
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Safe

Unsafe
Deadlock



• A state is said to be safe, if there exists a sequence 
of processes [P1, P2,…, Pn] such that for each Pi the 
resources that Pi can still request can be satisfied by 
the currently available resources plus the resources 
held by all Pj where j < i

• State is safe b/c OS can definitely avoid deadlock
•block new requests until safe order is executed

• Avoids circular wait condition from ever happening
• Process waits until safe state is guaranteed

Safe State
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Suppose: 12 tape drives and 3 processes: p0, p1, and p2

Current state is safe because a safe sequence exists: [p1, p0, p2]
- p1 can complete with remaining resources
- p0 can complete with remaining+p1
- p2 can complete with remaining+p1+p0

What if p2 requests 1 drive? Grant or not?

Safe State Example
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max 
need

current 
usage

could still
ask for

p0 10 5 5
p1 4 2 2
p2 9 2 7

3 drives remain



• from 10,000 feet:
• Process declares its worst-case needs, asks 

for what it “really” needs, a little at a time
• Algorithm decides when to grant requests
- Build a graph assuming request granted
-Reducible?  yes: grant request, no: wait

Problems:
• Fixed number of processes
•Need worst-case needs ahead of time
• Expensive

Banker’s Algorithm
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If neither avoidance or prevention is 
implemented, deadlocks can (and will) 
occur. Now what?

Detect & Recover

Reactive Responses to Deadlocks
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• Track resource allocation (who has what)
• Track pending requests (who’s waiting for what)

When should we run this? 
• For each request? 
• After each unsatisfiable request?
• Hourly? 
• Once CPU utilization drops below a threshold?
• Some combination of these?

Deadlock Detection
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Blue screen & reboot?

Kill one/all deadlocked processes
• Pick a victim
• Terminate
• Repeat if needed

Preempt resource/processes till deadlock broken
• Pick a victim (# resources held, execution time)
• Rollback (partial or total, not always possible)
• Starve (prevent process from being executed

Deadlock Recovery
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Prevent
• Negate one of the four necessary conditions.
Avoid
• Schedule processes really carefully (?)
Detect
• Determine if a deadlock has occurred
Recover

• Kill or rollback

Summary
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