CPU Scheduling
(Chapter 7)

CS 4410
Operating Systems

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

The Problem

You’re the cook at State Street Diner
* customers continuously enter and place
orders 24 hours a day
 dishes take varying amounts to prepare

What is your goal?
* minimize average latency
* minimize maximum latency
* maximize throughput

Which strategy achieves your goal?

Goals depend on context

What if instead you are:

* the owner of an (expensive) container
ship and have cargo across the world

* the head nurse managing the waiting
room of the emergency room

* a student who has to do homework in
various classes, hang out with other
students, eat, and occasionally sleep

Schedulers in the OS

* CPU Scheduler selects a process to run
from the run queue

* Disk Scheduler selects next read/write
operation

* Network Scheduler selects next packet to
send or process

* Page Replacement Scheduler selects
page to evict

We’ll focus on CPU Scheduling

Kernel Operation (conceptual, simplified)

1. Initialize devices
2. Initialize “first process”
3. while (TRUE) {

while device interrupts pending
/\\ - handle device interrupts

* while system calls pending
- handle system calls

* if run queue is non-empty
- select process and switch to it
* otherwise

- wait for device interrupt

—

Performance Terminology

Task/Job

* Userrequest: e.g., mouse click, web request,
shell command, ...

Response time (latency, delay): How long?
* User-perceived time to do some task.

Initial waiting time: When do | start?
» User-perceived time before task begins.

Total waiting time: How much thumb-twiddling?
* Time on the run queue but not running.

Terminology Alert!

Per Job or Task Metrics

Response Time / Latency / Delay

/\
(A\

Initial Waiting Time
N\

f \

Ar T
\ |

Time of First time Job
submission scheduled Completed

Total Waiting Time: sum of “red” periods

More Performance Terminology

Throughput: How many tasks over time?
* The rate at which tasks are completed.

Predictability: How consistent?

* Low variance in response time for repeated
requests.

Overhead: How much extra work?
e Time to switch from one task to another.

Fairness: How equal is performance?
* Equality in the number and timeliness of resources
given to each task.

Starvation: How bad can it get?

* The lack of progress for one task, due to resources
given to a higher priority task.

The Perfect Scheduler

* Minimizes latency
* Maximizes throughput
* Maximizes utilization:
keeps all devices busy
* Meets deadlines:
think image processing, car brakes, etc.
* s Fair:
everyone makes progress, no one starves

No such scheduler exists! ®

When does scheduler run?

Non-preemptive
Process runs until it voluntarily yields CPU
* process blocks on an event (e.g., 1/O or
synchronization)
* process yields
* process terminates
Preemptive
All of the above, plus:
* Timer and other interrupts
* When processes cannot be trusted to yield
* Incurs some overhead

10

Process Model

Processes switch between CPU & I/0O bursts
CPU-bound jobs: Long CPU bursts

|/O-bound: Short CPU bursts

Problems:
 don’t know job’s type before running
* jobs also change over time

Basic scheduling algorithms:

* Firstin first out (FIFO)
* Shortest Job First (SJF)
* Round Robin (RR)

Cornell CIS

First In First Out (FIFO)

Processes P, P,, P, with compute time 12, 3,3

Scenario 1: arrival order P, P,, P,

Average Response Time:(12+15+18)/3 =15

I A o

TimeO 12 15 18
Scenario 2: arrival order P,, P,, P,

Average Response Time: (3+6+18)/3=9

P,
Time O 3 6 18

FIFO Roundup

Simple

Low-overhead

No Starvation

Optimal avg. response time
(if all tasks same size)

+ + + +

- Poor avg. response time if
tasks have variable size

- Average response time very
sensitive to arrival time

- Not responsive to
interactive tasks

Shortest Job First (SJF)

Schedule in order of estimated completion' time

Scenario : each job takes as long as its number

Average Response Time; (1+2+3+4+5)/5 =3
1 2 6 10 1

Time 0O

5

Would another schedule improve avg response time?

fwith preemption, remaining time

FIFO vs. SJF

Tasks

FIFO

N

—_~ A~ A~ ~ o~
W
N SN N N SN

Tasks

SJF

—_~ A~ A~ L~ o~~~
w N
N N N N S

=N

Effect on the short jobs is huge.
Effect on the long job is small.

Time

16

Shortest Job First Prediction

How to approximate duration of next CPU-burst
* Based on the durations of the past bursts
* Past can be a good predictor of the future

* No need to remember entire past history!

Use exponential average:
t, actual duration of nt" CPU burst
1, predicted duration of nt" CPU burst
1., Ppredicted duration of (n+1)th CPU burst

T =0T, +(l-a)t,

0<a <1, adetermines weight placed on past behavior

17

SJF Roundup

+ Optimal average
response time (when jobs
available simultaneously)

- Pessimal variance in
response time

- Needs estimate of

execution time

— Can starve long jobs

- Frequent context switches .

Round Robin (RR)

* Each process allowed to run for a quantum
* Context is switched (at the latest) at the end
of the quantum

What is a good quantum size?
* Too long, and it morphs into FIFO
 Too short, and much time lost context
switching
* Typical quantum: about 100X cost of
context switch (~100ms vs. << 1 ms)

Effect of Quantum Choice in RR

Tasks Round Robin (1 ms time slice)

Rest of Task 1

Tasks Round Robin (100 ms time slice)

Rest of Task 1

Time

Round Robin vs FIFO

Assuming no overhead to time slice, is
Round Robin always better than FIFO?

0008

What’s the worst case scenario for Round
Robin?
* What’s the least efficient way you could get
work done this semester using RR?

21

Round Robin vs. FIFO

Tasks of same length that start ~same time

At least it’s fair?

Tasks Round Robin (1 ms time slice) l

(1) |

o1 .’

@ | l

@) t !

(5) t
Tasks T FIFO and SJF

1 Optimal!

N
R N " W

—_~ A~ A~ A~ o~
w

_ 22
Time

More Problems with Round Robin

Mixture of one I/O Bound tasks + two CPU Bound Tasks
/0 bound: compute, go to disk, repeat
- RR doesn’t seem so fair after all.. ..

Tasks compute g0 to disk compute g0 to disk
~S S . Ve Yate
1/0 Bound walt 190 ms.............
Issues 1/0 Issues 1/0
1/0 Completes 1/0 Completes
Request Request
CPU Bound 100 ms quanta 100 ms quanta
CPU Bound 100 ms quanta

Time 23

RR Roundup

+ No starvation
+ Can reduce response time
+ Low Initial waiting time

— Overhead of context
switching
- Mix of /O and CPU bound

- Particularly bad for
simultaneous, equal
length jobs

Priority-based scheduling algorithms:
* Priority Scheduling

* Multi-level Queue Scheduling
* Multi-level Feedback Queue Scheduling

Cornell CIS

Priority Scheduling

* Assign a number to each job and
schedule jobs in (increasing) order

* Reduces to SJFif T, is used as priority

* To avoid starvation, change job’s priority
with time (aging)

26

Multi-Level Queue Scheduling

Multiple ready queues based on job “type”
* Interactive processes Highest priority

 CPU-bound processes —> S -

* batch jobs

* system processes —>__Interactive " {—>

* student programs —> Batch .
Different queues may be scheduled

using different algorithms —>»>| Student >

Lowest priority
— Queue classification difficult
(Process may have CPU-bound and interactive phases)
- No queue re-classification

27

Multi-Level Feedback Queues

* Like multilevel queue, but Highest priority
assignments are not static

» Jobs start at the top R =
* Use your guantum? move down i
* Don’t? Stay where you are L Quantum =8 _:|>
L RR — >
Need parameters for: M]
* Number of queues Lowest priority

* Scheduling alg. per queue
* When to upgrade/downgrade job

28

Problem Revisited

* Cook at State Street Diner: how to

minimize the average wait time for food?
(most restaurants use FCFS)

* Nurse in the emergency room

» Student with assignments, friends, and a
need for sleep

29

Thread Scheduling

Threads share code & data segments o
 Option 1: Ignore this fact S e e
* Option 2: Gang scheduling* % % % %
* allthreads of a process run together X-\«\@
(pink, green) % % % %
+ Need to synchronize? Other thread is v
available
* Option 3: Space-based affinity*
 assign tasks to processors (pink =2 P1, P2)
+ Improve cache hit ratio o %

e Option 4: Two-level scheduling i
* schedule processes, and within each
process, schedule threads
+ Reduce context switching overhead and
improve cache hit ratio

*multiprocessor only.

Real-Time Scheduling

Real-time processes have timing constraints
* Expressed as deadlines or rate requirements

Common RT scheduling policies

* Earliest deadline first (EDF) (priority = deadline)
* Task A:1/0 (Ims compute + 10 ms 1/O), deadline=12 ms
 Task B: compute, deadline=10 ms

* Priority Donation
* High priority task (needing lock) donates
priority to lower priority task (with lock)

31

