
Processes & Threads
(Chapter 3)

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

Processes!

2

Program is a file containing:
• executable code (machine instructions)
• data (information manipulated by these

instructions)
that together describe a computation

• Resides on disk
• Obtained via compilation & linking

What is a Program?

3

• An instance of a program
• An abstraction of a computer:

Address Space + Execution Context + Environment

A good abstraction:
• is portable and hides implementation details
• has an intuitive and easy-to-use interface
• can be instantiated many times
• is efficient and reasonably easy to implement

What is a Process?

4

A program is passive:
code + data

A process is alive:
code + data + stack + registers + PC…

Same program can be run simultaneously.
(1 program, 2 processes)

> ./bestprogram &
> ./bestprogram &

Process != Program

5

But somehow each process has its own:
• Registers
• Memory
• I/O resources
• “thread of control”

CPU runs each process directly

6

For each process, the OS has a PCB containing:
• location in memory
• location of executable on disk
• which user is executing this process
• process privilege level
• process identifier (pid)
• process arguments (for identification with ps)
• process status (Ready, waiting, finished, etc.)
• register values
• scheduling information
• PC, SP, eflags/status register

… and more!

Usually lives on the kernel stack

Process Control Block (PCB)

7

Possibility #1:
Only the kernel may start a process

Possibility #2:
User-level processes may start processes

Who should be allowed to start a process?

8

System Call
Interface

Portable Operating
System Kernel

Portable
OS Library

Web ServersCompilers Source Code Control

Web Browsers Email

Databases Word Processing

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

802.11 a/b/g/n SCSI IDE

Graphics Accelerators LCD Screens

System Call Interface

9

System Call
Interface

Why so skinny?

Example:
Creating a Process

Windows:
CreateProcess(…);

UNIX
fork + exec

System Call:

if (!CreateProcess(

NULL, // No module name (use command line)

argv[1],// Command line

NULL, // Process handle not inheritable

NULL, // Thread handle not inheritable

FALSE, // Set handle inheritance to FALSE

0, // No creation flags

NULL, // Use parent's environment block

NULL, // Use parent's starting directory

&si, // Pointer to STARTUPINFO structure

&pi) // Ptr to PROCESS_INFORMATION structure

)

CreateProcess (Simplified)

10[Windows]

Kernel has to:
• Allocate ProcessID
• Create & initialize PCB in the kernel
• Create and initialize a new address space
• Load the program into the address space
• Copy arguments into memory in address space
• Initialize h/w context to start execution at “start”
• Inform scheduler that new process is ready to run

Beginning a Process via CreateProcess

11[Windows]

System Call:

int pid = fork(void J
NULL, // No module name (use command line)
argv[1],// Command line
NULL, // Process handle not inheritable
NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE
0, // No creation flags
NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&si, // Pointer to STARTUPINFO structure
&pi)

)

CreateProcess (Simplified)

12

fork (actual form)

[UNIX]

Kernel has to:
• Allocate ProcessID
• Create & initialize PCB in the kernel
• Create and initialize a new address space
• Load the program into the address space
• Copy arguments into memory in address space
• Initialize the address space with a copy of the entire

contents of the address space of the parent
• Initialize h/w context to start execution at “start”
• Inherit execution context of parent (e.g., open files)
• Inform scheduler that new process is ready to run

Beginning a Process via CreateProcess

13

fork()

[UNIX]

Creating and Managing Processes

14[UNIX]

fork
Create a child process as a clone of the current

process. Returns to both parent and child. Returns
child pid to parent process, 0 to child process.

exec
(prog, args)

Run the application prog in the current process
with the specified arguments. (use execve in A1)

wait(pid) Pause until the child process has exited.

exit
Tell the kernel the current process is complete, and its
data structures (stack, heap, code) should be garbage

collected. Why not necessarily PCB?
kill

(pid, type)
Send an interrupt of a specified type to a process.

(a bit of a misnomer, no?)

[UNIX]

Fork + Exec

15

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(child_pid);

PC

?

Program A
Process 1

[UNIX]

child_pid

Fork + Exec

16

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(child_pid);

PC

42

Program A
Process 1

[UNIX]

child_pid

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(child_pid);

PC

0

Program A
Process 42

child_pid

fork returns
twice!

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(child_pid);

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(child_pid);

Fork + Exec

17

PC

Program A
Process 1

[UNIX]

PC

Program A
Process 42

Waits until child exits.
42child_pid

0child_pid

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(child_pid);

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(child_pid);

42child_pid

0child_pid

Fork + Exec

18

PC

Program A
Process 1

[UNIX]

PC

Program A
Process 42

if and else
both executed!

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(child_pid);

42child_pid

Fork + Exec

19

PC

Program A
Process 1

[UNIX]

main() {
...

}

PC
Program B
Process 42

child_pid = fork();
if (child_pid==0)
exec(B);

else
wait(child_pid);

42child_pid

Fork + Exec

20

PC

Program A
Process 1

[UNIX]

/*
* Corresponds to Figure 3.5 in the textbook
*
*/

#include <stdio.h>
#include <unistd.h>

int main() {

int child_pid = fork();

if (child_pid == 0) { // child process
printf("I am process #%d\n", getpid());
return 0;

} else { // parent process.
printf("I am the parent of process #%d\n", child_pid);
return 0;

}
}

Code example (fork.c)

21

Possible outputs?

Job control system
• runs programs on behalf of the user
• allows programmer to create/manage programs

• sh Original Unix shell (Stephen Bourne,
AT&T Bell Labs, 1977)

• csh BSD Unix C shell (tcsh: enhanced
csh at CMU and elsewhere)

• bash “Bourne-Again” Shell

What is a Shell?

22Runs at user-level. Uses syscalls: fork, exec, etc.

Built-In UNIX Shell Commands

23[UNIX]

jobs List all jobs running in the background + all
stopped jobs.

bg <job> Run the application prog in the current process.

fg <job> Change a stopped or running background job to a
running in the foreground.

kill <job> Terminate a job.

[UNIX]

Allow applications to behave like operating systems.
Signals (virtualized interrupt)

24[UNIX][UNIX]

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt
(e.g., ctrl-c from keyboard)

9 SIGKILL Terminate Kill program
(cannot override or ignore)

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

20 SIGTSTP Stop until next
SIGCONT

Stop signal from terminal
(e.g. ctrl-z from keyboard)

Kernel delivers a signal to a destination process

For one of the following reasons:
• Kernel detected a system event (e.g., div-by-zero

(SIGFPE) or termination of a child (SIGCHLD))
• A process invoked the kill system call requesting

kernel to send signal to another process
- debugging
- suspension
- resumption
- timer expiration

Sending a Signal

25

A destination process receives a signal when
it is forced by the kernel to react in some way
to the delivery of the signal.

Three possible ways to react:
1. Ignore the signal (do nothing)
2. Terminate process (+ optional core dump)
3. Catch the signal by executing a user-level

function called signal handler
- Like a hardware exception handler being called in

response to an asynchronous interrupt

Receiving a Signal

26

int main() {
pid_t pid[N];
int i, child_status;

for (i = 0; i < N; i++) // N forks
if ((pid[i] = fork()) == 0) {

while(1); //child infinite loop
}

/* Parent terminates the child processes */
for (i = 0; i < N; i++) { // parent continues executing

printf("Killing proc. %d\n", pid[i]);
kill(pid[i], SIGINT);

}
/* Parent reaps terminated children */
for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status)) // parent checks for each child’s exit

printf("Child %d terminated w/exit status %d\n", wpid,
WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
exit(0);

}

Signal Example (signal.c)

27

void int_handler(int sig) {
printf("Process %d received signal %d\n", getpid(), sig);
exit(0);

}
int main() {

pid_t pid[N];
int i, child_status;
signal(SIGINT, int_handler); //register handler for SIGINT
for (i = 0; i < N; i++) // N forks

if ((pid[i] = fork()) == 0) {
while(1); //child infinite loop

}
for (i = 0; i < N; i++) { // parent continues executing

printf("Killing proc. %d\n", pid[i]);
kill(pid[i], SIGINT);

}
for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status)) // parent checks for each child’s exit

printf("Child %d terminated w/exit status %d\n", wpid,
WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
exit(0);

}

Handler Example (handler.c)

28

Threads!

29

Other terms for threads:
• Lightweight Process
• Thread of Control
• Task

Stack

What happens when…

30

Mail

Kernel
PCBs

0x00000000

0xFFFFFFFF

Apache wants to run multiple
concurrent computations?

Apache

Emacs

ApacheTwo heavyweight address
spaces for two concurrent
computations?

What is distinct about
these address spaces?

Heap
Data
Insns

Stack
Heap
Data
Insns

Physical address space
Each process’ address space by color
(shown contiguous to look nicer)

Stack 1

Idea

310x00000000

0xFFFFFFFF

ApacheHeap
Data
Insns

Stack 2

Place concurrent
computations in the
same address space!

Mail

Kernel
PCBsPhysical address space

Each process’ address space by color
(shown contiguous to look nicer)

Emacs

Process:
• Privilege Level
• Address Space
• Code, Data, Heap
• Shared I/O resources
• One or more Threads:

• Stack
• Registers
• PC, SP

Process vs. Thread

32

Thread Memory Layout

33

Data

Insns

Stack 1

PC

Thread 1

PC

PC

SP
Stack 2

Thread 2
SP

Stack 3

Thread 3
SP

Virtual
Address
Space(Heap subdivided, shared, & not shown.)

Process abstraction combines two concepts
• Concurrency: each process is a sequential

execution stream of instructions
• Protection: Each process has own address

space

Threads decouple concurrency & protection
• A thread represents a sequential execution

stream of instructions.
• A process defines the address space that may

be shared by multiple threads
• Threads must be mutually trusting. Why?

Processes and Threads

34

A single-execution stream of instructions;
represents a separately schedulable task
• OS can run, suspend, resume it at any time
• bound to a process
• execution speed is unspecified, non-zero

Virtualizes the processor
• programs run on machine with an infinite

number of processors (hint: not true!)

Thread: abstraction for concurrency

35

Performance: exploiting multiple processors
Do threads make sense on a single core?
Encourages natural program structure
• Expressing logically concurrent tasks
• update screen, fetching data, receive user input

Responsiveness
• splitting commands, spawn threads to do work

in the background
Mask long latency of I/O devices
• do useful work while waiting

Why Threads?

36

for (k = 0; k < n; k++) {
a[k] = b[k] × c[k] + d[k] × e[k]

}

Web server:
1. get network message (URL) from client
2. get URL data from disk
3. compose response
4. send response

Some Thread Examples

37

• Have data/code/heap/stack
• Have at least one thread
• Process dies à resources

reclaimed, its threads die
• Interprocess communication

via OS and data copying
• Have own address space,

isolated from other
processes’

• Expensive creation and
context switch

Processes vs. Threads

38

• Have own stack
• 1+ threads live in a process
• Thread dies à its stack

reclaimed
• Inter-thread communication

via memory
• Have own stack and regs,

but no isolation from other
threads in the same process

• Inexpensive creation and
context switch

• Each can run on a different processor

Simple Thread API

39

void
thread_create

(thread,func,arg)

Creates a new thread in thread, which will execute
function func with the arguments arg

void
thread_yield()

Calling thread gives up processor. Scheduler can
resume running this thread at any point.

int
thread_join

(thread)

Wait for thread to finish, then return the value
thread passed to thread_exit.

May be called only once for each thread.

void
thread_exit

(ret)

Finish caller; store ret in caller’s TCB and wake up
any thread that invoked thread_join(caller).

Kernel knows about, schedules
threads (just like processes)

#1: Kernel-Level Threads

40

Stack 1

0x00000000

0xFFFFFFFF

ApacheHeap
Data
Insns

Stack 2

Mail

Kernel
PCBs

Emacs

• Separate PCB (TCB)
for each thread

• PCBs have:
• same: page table base reg.
• different: PC, SP, registers

• Threads share virtual
address space

Build a mini-OS in user space
• Real OS unaware of threads
• Single PCB

Generally more efficient
than kernel-level threads
(Why?)

But kernel-level threads simplify
system call handling and
scheduling (Why?)

#2: User-Level Threads

410x00000000

0xFFFFFFFF

Apache

Mail

Kernel
PCBs

Emacs

stack 2
Heap
Data
Insns

stack 1
“os” stack

Thread Life Cycle

42

Init

Ready

Finished

Running

Waiting

Processes go through these states, too.

Thread creation

43

Ready

Finished

Running

Waiting

Init

TCB status: being created
Registers: in TCB

Thread is Ready to Run

44

Finished

Running

Waiting

TCB: on Ready list
Registers: in TCB

Init

Admitted to
Run Queue

Ready

Thread is Running

45

Finished

Waiting

Init

Admitted to
Run Queue

Ready dispatch Running

TCB: on Running list
Registers: Processor

Thread Yields (back to Ready)

46

Finished

Waiting

Init

Admitted to
Run Queue

Ready dispatch Running

TCB: on Ready list
Registers: in TCB

yield,
interrupt,

descheduled

Thread is Running Again!

47

Finished

Waiting

Init

Admitted to
Run Queue

Ready dispatch Running

TCB: on Running list
Registers: Processor

yield,
interrupt,

descheduled

Thread is Waiting

48

FinishedInit

Admitted to
Run Queue

Ready dispatch Running

TCB: on Waiting list (scheduler’s or other)
Registers: TCB

yield,
interrupt,

descheduled

I/O operation
join(), wait()

Waiting

Thread is Ready Again!

49

FinishedInit

Admitted to
Run Queue

Ready dispatch Running

TCB: on Ready list
Registers: in TCB

yield,
interrupt,

descheduled

Waiting

I/O operation
join(), wait()

I/O or thread
completion

Thread is Running Again!

50

FinishedInit

Admitted to
Run Queue

Ready dispatch Running

TCB: on Running list
Registers: Processor

yield,
interrupt,

descheduled

Waiting

I/O operation
join(), wait()

I/O or thread
completion

done,
thread_exit()

Thread is Finished (Process = Zombie)

51

Init

Admitted to
Run Queue

Ready dispatch Running

TCB: on Finished list (to pass exit value), ultimately deleted
Registers: TCB

yield,
interrupt,

descheduled

Waiting

I/O operation
join(), wait()

I/O or thread
completion

Finished

Do not presume to know the schedule

52

Synchronization
Matters!

