
Security

CS 4410
Operating Systems

References: Security Introduction and Access Control by Fred Schneider

[E. Birrell, A. Bracy, E. Sirer, R. Van Renesse]



Historical Context

2
http://www.computerhistory.org, https://en.wikipedia.org

1961

1969

1960’s OSes begin to be shared. Enter:
• Communication
• Synchronization
• Security: once a small OS sub-topic. Not anymore!



Confidentiality: keeping secrets
- who is allowed to learn what information

Integrity: permitting changes
- what changes to the system and its environment are 

allowed
Availability: guarantee of service
- service should be “timely”

Security Properties: CIA

3



Gold (Au) Standard for Security [Lampson]

• Authorization: mechanisms that govern whether 
actions are permitted

• Authentication: mechanisms that bind principals to 
actions

• Audit: mechanisms that record and review actions

Security in Computer Systems

4



• Protection - This lecture
• Authorization: what are you permitted to do?
• Access Control Matrix

• Security – Next lecture
• Authentication: how do we know who you are?
• Threats and Attacks

Plan of Attack               (no pun intended!)

5



Operations: how one learns or updates information
Principals: executors (users, processes, threads, procedures)
Objects of operations: memory, files, modules, services

Access Control Policy:
• who may perform which operations on which objects
• enforces confidentiality & integrity

Goal: each object is accessed correctly and only by those principals 
that are allowed to do so 

Access Control Terminology

6



Reference Monitor: 
• entity with the power to observe and enforce the policy
• consulted on each operation invocation
• allows operation if invoker has required privileges
• can enforce confidentiality and/or integrity

Assumptions: 
• Predefined operations are the sole means by which principals can 

learn or update information
• All predefined operations can be monitored (complete mediation)

Access Control Mechanisms

7



Heart of every trusted system has a small TCB
• HW & SW necessary for enforcing security rules
• Typically has:
- most hardware, firmware 
- portion of OS kernel 
- most or all programs with superuser power

• Desirable features include:
- Should be small
- Should be separable and well-defined
- Easy to scrutinize independently

Trusted Computing Base (TCB)

8



• All sensitive operations go through the reference monitor
• Monitor decides if operation should proceed
• Not a separable module in most OSes…

TCB and Reference Monitor

9

User space

Kernel space

User 
Process

OS kernel
Trusted Computing Base

Reference Monitor



Discretionary Access Control:
• owner defines authorizations
• Subjects determine who has access to their objects
• Commonly used (Linux/MacOSX/Windows File Systems)
• Flawed for tighter security (program might be buggy)
• This lecture

Mandatory Access Control: 
• System imposes access control policy that object owner’s cannot 

change
• centralized authority defines authorizations

Who defines authorizations?

10



“Every program and every privileged user of the system should 
operate using the least amount of privilege necessary to complete the 
job.”

- Jerome Saltzer
(of the end-to-end argument)

Want to minimize: 
• code running inside kernel
• code running as sysadmin

Challenge:   It’s hard to know:
• what permissions are needed in advance
• what permissions should be granted

Principle of Least Privilege

11



• Abstract model of protection
• Rows: principals = users
• Columns: objects = files, I/O, etc.

Unordered set of triples <Principal,Object,Operation>
What does Principal of Least Privilege say about this?

Access Control Matrix

12

Principals

OBJECTS
prelim.pdf jan-hw.tex scores.xls

rvr
(prof) r, w r r, w

jan
(student) r, w



Protection Domains = new set of principals
• each process belongs to a protection domain
• executing process can transition from domain to domain

Example domain: user ▷ task 
• task = program, procedure, block of statements
• task = started by user or in response to user’s request 
• user ▷ task: holds minimum privilege to get task done for user

à task-specific privileges (PoLP is J)

Need Finer-Grained Principals

13



Possibilities:

1. Certain system calls cause protection-domain 
transitions. Obvious candidates:

• invoking a program 
• changing from user mode to supervisor mode

2. Provide explicit domain-change syscall
• application programmer or a compiler then required to 

decide when to invoke this domain-change system call

Protection Domain Implementation

14



When to transition protection-domains?
• invoking a program
• changing from user to kernel mode
• …

Need to explicitly authorize them in the matrix

Access Matrix with Protection Domains

15

Principals
OBJECTS

prelim.pdf jan-hw.tex scores.xls

rvr▷sh
rvr▷latex r, w r
rvr▷excel r, w
jan▷sh

jan▷latex r, w
jan▷excel



e = enter

Access Matrix with Domain Transitions

16

Principals

OBJECTS

pr
el
im
.p
df

ja
n-
hw
.t
ex

sc
or
es
.x
ls

rv
r▷
sh

rv
r▷
la
te
x

rv
r▷
ex
ce
l

ja
n▷
sh

ja
n▷
la
te
x

ja
n▷
ex
ce
l

rvr▷sh e e
rvr▷latex r, w r
rvr▷excel r, w
jan▷sh e e

jan▷latex r, w
jan▷excel



Must support:
• Determining if <Principal,Object,Operation> is in matrix
• Changing the matrix
• Assigning each process a protection domain
• Transitioning between domains as needed
• Listing each principal’s privileges (for each object)
• Listing each object’s privileges (held by principals)

2D array?   
+ looks good in powerpoint!  
− sparse  à store only the non-empty cells

DAC Implementation Needs

17



Access Control List (ACL): column for each object stored 
as a list for the object

How shall we implement this?

18

Principals
OBJECTS

prelim.pdf jan-hw.tex scores.xls

rvr▷sh
rvr▷latex r, w r
rvr▷excel r, w
jan▷sh

jan▷latex r, w
jan▷excel



Access Control List (ACL): column for each object stored 
as a list for the object
Capabilities: row for each subject stored as list for the 
subject

Same in theory; different in practice!

How shall we implement this?

19

Principals
OBJECTS

prelim.pdf jan-hw.tex scores.xls

rvr▷sh
rvr▷latex r, w r
rvr▷excel r, w
jan▷sh

jan▷latex r, w
jan▷excel



ACL for an object is a list

e.g., ⟨ebirrell, {r,w}⟩ ⟨clarkson, {r}⟩ ⟨student, {r}⟩

To check whether is allowed to perform some 
operation on some object,

• Look up principal in object’s ACL. If not in 
ACL, reject

• Check whether operation is in the set for that 
principal. If not, reject

Access Control Lists

20



Access Control in Windows

21

In NTFS: each file has a set of properties
Richer set than UNIX: RWX 
P(permission) O(owner) D(delete), read (RX), change (RWXO), 
full control (RWXOPD)



Advantages:
• Efficient review of permissions for an object
• Centralized enforcement is simple to deploy, verify
• Revocation is straightforward

Disadvantages:
• Inefficient review of permissions for a principal
• Large ACLs take up space in object
• Vulnerable to confused deputy attack

Access Control Lists Roundup

22



The capability list for a principal is a list

e.g., ⟨dac.tex, {r,w}⟩ ⟨dac.pptx, {r,w}⟩

Capabilities carry privileges:
1) Authorization: Performing operation on object  

requires a principal to hold a capability  such that 
2) Unforgeability: Capabilities cannot be counterfeited 

or corrupted. 

Note: Capabilities are (typically) transferable

Capability Lists

23



OS maintains a list of capabilities
for each principal (process) 

C-Lists

24

1) Authorization: OS mediates 
access to objects, checks 
process capabilities

2) Unforgeability: capabilities 
are stored in protected 
memory region (kernel 
memory)



UNIX: has user and group identifiers: uid and gid

Per process: protection domain  = rvr|faculty▷sh

Per file: ACL  owner|group|other à stored in i-node
• Only owner can change these rights (using chmod)
• Each i-node has 3x3 RWX bits for user, group, others
• 2 mode bits allow process to change across domains
- setuid, setgid bits

(Hybrid!) Approximation of access control scheme:
• Authorization (check ACL) performed at open
• Returns a file handle à essentially a capability
• Subsequent read or write uses the file handle

Access Control in UNIX

25



Advantages:
• Eliminates confused deputy problems
• Natural approach for user-defined objects

Disadvantages:
• Review of permissions?
• Delegation?
• Revocation? 

Capabilities Roundup

26



ACLs:
For each Object:
<P1,privs1>
<P2,privs2>…

Capabilities:
For each Principal:
<O1,privs1>
<O2,privs2>…

Review rights for
object O

Easy!
Print the list.

Hard. 
Need to scan all 
principals’ lists.

Review rights for 
principal P 
across all objects

Hard. 
Need to scan all 
objects’ lists.

Easy!
Print the c-list.

Revocation Easy!
Delete P from
O’s list.

If kernel tracks capabilities, 
invalidates on revocation. 
Harder if object tracks 
revocation list.

ACLs vs Capabilities

27



History of Discretionary Access Control (DAC)

28

1760+ early philosophical pioneers of private 
property (Blackston, Bastiat,+)

1965 “access control lists” coined @ MIT describing 
Multics (CTSS foreshadowed ACLs) (Daley & 
Neumann)

1966 “capability” coined and OS supervisor outlined 
@ MIT (Dennis & van Horn)

1974 early computer security: “the user gives 
access rights at his own discretion” (Walter+)

1983 DoD’s Orange book coins the term 
“discretionary access control” 



• Protection
• Authorization: what are you permitted to do?
• Access Control Matrix

• Security
• Authentication: how do we know who you are?
• Threats and Attacks

Plan of Attack

29



Establish the identity of user/machine by
• Something you are:

retinal scan, fingerprint
• Something you have:

physical key, ticket, credit card, smart card
• Something you know:

password, secret, answers to security questions, PIN

In the case of an OS this is done during login
• OS wants to know who the user is

Authentication

30



Two-factor Authentication: authenticate based on 
two independent methods
• ATM card + PIN
• password + secret Q
• password + registered cell phone

Multi-factor Authentication: two or more 
independent methods
Best to combine separate categories

• 2 passwords from a same person? arguably not 
independent

Multiple Factors

31



• System has 2 components: 
• Enrollment: measure & store characteristics
• Identification: match with user supplied values

• What are good characteristics?
Finger length, voice, hair color, retinal pattern, blood

Pros: user carries around a good password
Cons: difficult to change password, can be subverted

Biometrics: something you are

32



Door keys have been around long
Plastic cards inserted into reader associated with comp

• Also a password known to user, to protect against lost card

Magnetic stripe cards: ~140 bytes info glued to card
• Is read by terminal and sent to computer
• Info contains encrypted user password (only bank knows key)

Chip cards: have an integrated circuit
• Stored value cards: have EEPROM memory but no CPU
- Value on card can only be changed by CPU on another comp

• Smart cards: 4 MHz 8-bit CPU, 16 KB ROM, 4 KB EEPROM, 512 bytes 
RAM, 9600 bps comm. channel

Authentication with Physical Objects

33



Smart Cards

34

• Better security than stored value cards
• Card sends a small encrypted msg. to merchant, who can later 

use it to get money from the bank
• Pros: no online connection to bank required

• Perform local computations, remember long passwords



New user provides server with list of Q/A pairs
• Server asks one of them at random
• Requires a long list of question answer pairs

Prove identity by computing a secret function
• User picks an algorithm, e.g. x2

• Server picks a challenge, e.g. x=7
• User sends back 49 
• Should be difficult to deduce function by looking at results
In practice
• Algorithm is fixed, e.g. one-way hash, but user selects a key
• The server’s challenge is combined with user’s key to provide input to the 

function
Authenticate yourself as a human:

CAPTCHA, image tasks, etc.

Challenge Response Scheme

35



Secret known only to the subject

Top 10 passwords in 2017:  [SplashData]
1. 123456  
2. password
3. 12345678
4. qwerty
5. 12345

16: starwars, 18: dragon, 27: jordan23

Top 20 passwords suffice to compromise 10% of accounts
[Skyhigh Networks]

Passwords

36

6. 123456789
7. letmein
8. 1234567
9. football
10. iloveyou



How does OS know that the password is correct?

Simplest implementation:
• OS keeps a file with ⟨login, password⟩	pairs
• User types password
• OS looks for a loginà password match

Goal: make this scheme as secure as possible
• display the password when being typed?

Verifying Passwords

37



1. Store username/password in a file
• Attacker only needs to read the password file
• Security of system now depends on protection of this file!

Need: perfect authorization & trusted system administrators

Storing Passwords

38



39
https://twitter.com/c_pellegrino/status/981409466242486272



1. Store username/password in a file
• Attacker only needs to read the password file
• Security of system now depends on protection of this file!

Need: perfect authorization & trusted system administrators

2. Store login/encrypted password in file
• Access to password file ≠ access to passwords

Storing Passwords

40



Want a function f such that:
1. Easy to compute and store h(p)
2. Hard to compute p given h(p)
3. Hard to find q such that q ≠ p, h(q)==h(p)

Cryptographic hash functions to the rescue!
h(password) = encrypted-password e.g., SHA

(but don’t use SHA…)

• one-way property gives (1) and (2)
• collision resistance gives (3)

Remember: h(encrypted-password) ≠ password
h-1(encrypted-password) = password
h-1 hard to compute (hard ≈ impossible)

Hashing

41



Storing and Checking Passwords

42

==
?

login

p p’

plain text

hashed
Password File

passwd1’login1

passwd2’login2

hash
function

lookup

Authenticated!

Denied!

No

Yes



Suppose attacker obtains password file:
/etc/passwd public, known hash fn known

+ hard to invert à hard to obtain all the passwords

How else can I crack this file?

• Brute Force Attack:
- Enumerate all possible passwords p, calculate h(p) and see if 

it matches an entry in the file
• Dictionary Attack
- List all the likely passwords p, calculate h(p) and check for a 

match. (recall: top 20 passwords can compromise 10% of 
accounts)

Hashed passwords still vulnerable

43

Password File
passwd1’login1

passwd2’login2



Rainbow Table Attack

44

Password File

login h(p)
abc123 XXXXX

abc124 XXXXX

abc125 XXXXX

abc126 XXXXX

abc127 XXXXX

abc128 XXXXX

abc129 XXXXX

abc130 XXXXX

abc131 XXXXX

abc132 XXXXX

abc133 XXXXX

abc134 XXXXX

abc135 XXXXX

abc136 XXXXX

• Pre-compute the dictionary hashes (need space, not time), use 
hashed passwords as key

• Quick attack: look up each hashed password 1-by-1

h(p) p
XXXXX 123456

XXXXX password

XXXXX 12345678

XXXXX qwerty

XXXXX 12345

XXXXX 123456789

XXXXX letmein

XXXXX 1234567

XXXXX football

XXXXX iloveyou

abc123’s 
password is qwerty

“Rainbow Table”



• Previous scheme can be attacked: Dictionary Attack
• Attacker builds dictionary of likely passwords offline
• At leisure, builds hash of all the entries
• Checks file to see if hash matches any entry in password file
• There will be a match unless passwords are truly random
• 20-30% of passwords in UNIX are variants of common words
- Morris, Thompson 1979, Klein 1990, Kabay 1997

• Solutions:
• Shadow files: move password file to /etc/shadow
- This is accessible only to users with root permissions

• Salt: store (user name, salt, E(password+salt))
- Simple dictionary attack will not work. Search space is more.

More offline attacks

45



Vulnerabilities:  
• single dictionary compromises all users 
• passwords chosen from small space

Countermeasure:  include a unique system-chosen 
nonce as part of each user's password 

• make every user's stored hashed password different, 
even if they chose the same password

• now passwords come from a larger space

Each user has: login, unique salt s, passwd p
System stores:  login, s, H(s, p)

Salting

46



• If the hacker guesses qwerty, has to try: 
h(0001qwerty), h( 0002qwerty), h( 0003qwerty) …

• UNIX adds 12-bit of salt
• Also, passwords should be secure:

• Length, case, digits, not from dictionary
• Can be imposed by the OS! This has its own tradeoffs

Salting Example

47

login salt h(p||s)

abc123 4238 h(423812345)

abc124 2918 h(2918password)

abc125 6902 h(6902LordByron)

abc126 1694 h(1694qwerty)

abc127 1092 h(109212345)

abc128 9763 h(97636%%TaeFF)
abc129 2020 h(2020letmein)


