
Virtual Memory & Caching

(Chapter 12-17)

CS 4410
Operating Systems

• Paged Translation
• Efficient Address Translation
•  Multi-Level Page Tables
•  Inverted Page Tables
•  TLBs

This time: Virtual Memory & Caching

Last Time: Address Translation

2

3

• Virtual Memory
• Caching

•  Each process has illusion of large address space
•  264 for 64-bit addressing

•  However, physical memory is much smaller
•  How do we give this illusion to multiple processes?

•  Virtual Memory: some addresses reside in disk

What is Virtual Memory?

4 4

Page
Table

Physical memory

Disk

Virtual memory

page 0
page 1
page 2
page 3
page 4

page N

Page Table

Swapping
•  Loads entire process in memory, runs it, exit
•  “Swap in” or “Swap out” a process
•  Slow (for big, long-lived processes)
•  Wasteful (might not require everything)
Paging
•  Runs all processes concurrently
•  A few pages from each process live in memory
•  Finer granularity, higher performance
•  Large virtual mem supported by small physical mem

“to swap” (pushing contents out to disk in order to bring
other content from disk) ≠ “swapping”

Swapping vs. Paging

5

Mapped
•  to a physical frame

Not Mapped (→ Page Fault)
•  in a physical frame, but not currently mapped
•  still in the original program file
•  zero-filled (heap/BSS, stack)
•  on backing store (“paged or swapped out”)
•  illegal: not part of a segment
 → Segmentation Fault

(the contents of) A Virtual Page Can Be

6

Modify Page Tables with a valid bit (= “present bit”)
•  Page in memory à valid = 1
•  Page not in memory à PT lookup triggers page

fault

32		:V=1	
4183:V=0	
177	:V=1	
5721:V=0	

Supporting Virtual Memory

7

Disk

Mem
Page Table

0	
1	
2	
3	

Identify page and reason (r/w/x)

•  access inconsistent w/ segment access rights

 à terminate process

•  access of code or data segment:
 à does frame with the code/data already exist?
 No? Allocate a frame & bring page in (next slide)

•  access of zero-initialized data (BSS) or stack
•  Allocate a frame, fill page with zero bytes

Handling a Page Fault

8

• Find a free frame
-  or evicts one from memory (next slide)
-  which one? (next lecture)

•  Issue disk request to fetch data for page
-  what to fetch? (requested page or more?)

• Block current process
• Context switch to new process
• When disk completes, set valid bit to 1

(& other permission bits), put current
process in ready queue

When a page needs to be brought in…

9

•  Find all page table entries that refer to old page
- Frame might be shared
- Core Map (frames → pages)

•  Set each page table entry to invalid
•  Remove any TLB entries
- Hardware copies of now invalid PTE
- “TLB Shootdown”

•  Write changes on page back to disk, if needed
-  Dirty/Modified bit in PTE indicates need
-  Text segments are (still) on program image on disk

When a page is swapped out…

10

1.  TLB miss
2.  Trap to kernel
3.  Page table walk
4.  Find page is invalid
5.  Convert virtual

address to file +
offset

6.  Allocate frame
•  Evict if needed

7.  Initiate disk block

read into frame
8.  Disk interrupt when

DMA complete
9.  Mark page valid
10. Update TLB
11. Resume process at

faulting instruction
12. Execute instruction

Demand Paging, MIPS style

11

1.  TLB miss
2.  Page table walk
3.  Page fault (find

page is invalid)
4.  Trap to kernel
5.  Convert virtual

address to file +
offset

6.  Allocate frame
•  Evict if needed

7.  Initiate disk block

read into frame
8.  Disk interrupt when

DMA complete
9.  Mark page valid
10. Resume process at

faulting instruction
11. TLB miss
12. Page table walk to

fetch translation
13. Execute instruction

Demand Paging, x86 style

12

• Save current process’ registers in PCB
•  Also Page Table Base Register (PTBR)

• Flush TLB (if no pids)
• Page Table itself is in main memory
• Restore registers of next process to run
•  “Return from Interrupt”

Updated Context Switch

13

Process Creation
•  Allocate frames, create & initialize page

table & PCB

Process Execution
•  Reset MMU (PTBR) for new process
•  Context switch: flush TLB (or TLB has pids)
•  Handle page faults

Process Termination
•  Release pages

OS Support for Paging

14

15

• Virtual Memory
• Caching

•  TLBs
•  hardware caches
•  internet naming
•  web content
•  web search
•  email clients
•  incremental compilation
•  just in time translation
•  virtual memory
•  file systems
•  branch prediction

What are some examples of caching?

16

Every layer is a cache for the layer below it.

Memory Hierarchy

17

0%

25%

50%

75%

100%

1 2 4 8 16

H
it

R
a

te

Cache Size (KB)

Working Set

18

at what point does the working set of
this application fit in the cache?

1.  Collection of a process’ most recently used pages
 (The Working Set Model for Program Behavior, Denning,’68)
2.  Pages referenced by process in last Δ time-units

Excessive rate of paging
Cache lines evicted before they can be reused
Causes:
• Too many processes in the system
• Cache not big enough to fit working set
• Bad luck (conflicts)
• Bad eviction policies (later)
Prevention:
•  restructure your code

(smaller working set, shift data around)
•  restructure your cache (↑ capacity, ↑ associativity)

Thrashing

19

“Thrash” dates from the 1960’s, when disk drives were as large as
washing machines. If a program’s working set did not fit in memory, the
system would need to shuffle memory pages back and forth to disk.
This burst of activity would violently shake the disk drive.

Why “thrashing”?

20

http://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/

The first hard
disk drive—the
IBM Model 350
Disk File (came

w/IBM 305
RAMAC, 1956).

Total storage =

5 million
characters (just
under 5 MB).

•  Assignment: where do you put the data?
•  Replacement: who do you kick out?

21

Caching

•  Assignment: where do you put the data?
- Which entry in the cache?
- Which frame in memory?

•  Replacement: who do you kick out?

22

Caching

— not much choice
— lots of freedom

• Adding a layer of indirection disrupts
the spatial locality of caching

• What if virtual pages are assigned to
physical pages that are n cache sizes
apart?

à BIG PROBLEM:

 cache effectively smaller

Address Translation Problem

23

1. Color frames according to cache
configuration.

2. Spread each process’ pages across
as many colors as possible.

Solution: Cache Coloring (Page Coloring)

24

•  Assignment: where do you put the data?
•  Replacement: who do you kick out?

25

Caching

What do you do when memory is full?

•  Assignment: where do you put the data?
•  Replacement: who do you kick out?
- Random: pros? cons?
- FIFO
- MIN
- LRU
- LFU
- Approximating LRU

26

Caching

•  Random: Pick any page to eject at random
•  Used mainly for comparison

•  FIFO: The page brought in earliest is evicted
•  Ignores usage

•  OPT: Belady’s algorithm
•  Select page not used for longest time

•  LRU: Evict page that hasn’t been used for the
longest
•  Past could be a good predictor of the future

•  MRU: Evict the most recently used page
•  LFU: Evict least frequently used page

Page Replacement Algorithms

27

•  Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
•  3 frames (3 pages in memory at a time per process):

First-In-First-Out (FIFO) Algorithm

28

frames
1

1 2
2 1 3

3 2 1 4
3 2 4 1
3 1 4 2
2 1 4 5
2 1 5 1
2 1 5 2
2 1 5 3
2 3 5 4
4 3 5 5
4 3 5

ß contents of frames at time of reference

page fault
hit

marks arrival time4

reference

9 page faults

•  Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
•  4 frames (4 pages in memory at a time per process):

First-In-First-Out (FIFO) Algorithm

29

frames
1

1 2
2 1 3

3 2 1 4
4 3 2 1 1
4 3 2 1 2
4 3 2 1 5
4 3 2 5 1
4 3 1 5 2
4 2 1 5 3
3 2 1 5 4
3 2 3 4 5
3 2 5 4

ß contents of frames at time of reference

page fault
hit

marks arrival time4

reference

10 page faults

more frames à more page faults?

Belady’s Anomaly

•  Replace page that will not be used for the longest
•  4 frames example

Optimal Algorithm (OPT)

30

1
1 2

2 1 3
3 2 1 4

4 3 2 1 1
4 3 2 1 2
4 3 2 1 5
5 3 2 1 1
5 3 2 1 2
5 3 2 1 3
5 3 2 1 4
5 3 2 4 5
5 3 2 4

6	page	faults	
Question:	 	How	do	we	tell	the	future?		
Answer:	 	We	can’t	
	
OPT	used	as	upper-bound	in	measuring	
how	well	your	algorithm	performs	

In real life, we do not have access to the
future page request stream of a
program
•  No crystal ball
•  no way to know which pages a program

will access

à Need to make a best guess at which
pages will not be used for the longest
time

OPT Approximation

31

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Least Recently Used (LRU) Algorithm

32

1
1 2

2 1 3
3 2 1 4

4 3 2 1 1
4 3 2 1 2
4 3 2 1 5
4 5 2 1 1
4 5 2 1 2
4 5 2 1 3
3 5 2 1 4
3 4 2 1 5
3 4 2 5

page fault
hit

marks most recent use4

8 page faults

•  On reference: Timestamp each page
•  On eviction: Scan for oldest frame

Problems:
•  Large page lists
•  Timestamps are costly

Solution: approximate LRU
Q: “I thought LRU was already an
approximation…”
A: “It is... Oh well…”

* the blue shading in the previous frame diagram

Implementing* Perfect LRU

33

Approximating LRU*

Periodically, sweep
through all pages
•  Used? Clear use bit
•  Unused? reclaim

•  update core map
•  invalidate page table
•  write back if dirty
•  TLB shootdown
•  add to free list

Clock Algorithm: Not Recently Used

34	(*yes,	LRU	was	already	an	approximation…)	

Clock	Algorithm	Problems	

35	

What	if	Memory	is	Large?	
	
Leading	edge	clears	use	bit	
• 	slowly	clears	history	
• 	finds	victim	candidates	
	
	
Trailing	edge	evicts	pages					
				with	use	bit	set	to	0	
• 	fast:	original	clock	algorithm	
• 	slow:	all	pages	look	used	

Big	angle?	Small	angle?	
0	

0	
0	

1	

0	

0	

1	

blue	1’s	were	used	after	use	
bit	was	cleared	by	green	hand	

1	

evicts	1st	use=0	
frame	it	finds	

1	

MRU: Remove the most recently touched page
•  Good for data accessed only once, e.g. a movie

file
•  Not a good fit for most other data, e.g. frequently

accessed items

LFU: Remove page with lowest usage count

•  No record of when the page was referenced
•  Use multiple bits. Shift right by 1 at regular

intervals.

MFU: remove the most frequently used page

LFU and MFU do not approximate OPT well

Other Algorithms

How do you know:
•  if your cache is caching?
• how well your cache is caching?

P4: You will build a disk cache

