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Physical Reality: different processes/threads share 
the same hardware à need to multiplex 
•  CPU (temporal) 
•  Memory (spatial) 
•  Disk and devices (later) 

Why worry about memory sharing? 
•  Complete working state of process and/or kernel is 

defined by its data (memory, registers, disk) 
•  Don’t want different processes to have access to 

each other’s memory (protection) 

Can’t We All Just Get Along? 
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Isolation 
Don’t want distinct process states collided in physical 
memory (unintended overlap à chaos)  

Sharing 
Want option to overlap when desired (for efficiency and 
communication) 

Virtualization 
Want to create the illusion of more resources than exist in 
underlying physical system 

Utilization 
Want to best use of this limited resource 

Aspects of Memory Multiplexing 
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A Day in the Life of a Program 
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#include	<stdio.h>	
	
int	max	=	10;	
	
int	main	()	{	
			int	i;	
			int	sum	=	0;	
			add(m,	&sum);	
			printf(“%d”,i);		
			...	
	
}	
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Logical view of process memory 
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TERMINOLOGY ALERT: 
Page: the data itself 
Frame: physical location 

Paged Translation 
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Divide: 
•  Physical memory into fixed-sized blocks called frames 
•  Logical memory into blocks of same size called pages 
Management: 
•  Keep track of all free frames. 
•  To run a program with n pages, need to find n free frames 

and load program 

Notice: 
•  Logical address space can be noncontiguous! 
•  Process given frames when/where available 

Paging Overview 
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Address Translation, Conceptually 
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•  Hardware device 
•  Maps virtual to physical address  (used to 

access data) 
 
User Process:  
•  deals with virtual addresses 
•  Never sees the physical address 

Physical Memory: 
•  deals with physical addresses 
•  Never sees the virtual address 
 

Memory Management Unit (MMU) 
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      red cube is 255th 
byte in page 2. 
 
Where is the red cube 
in physical memory? 

High-Level Address Translation 
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Page number – Upper bits 

•  Must be translated into a physical frame number 

Page offset – Lower bits 
•  Does not change in translation 

 
 
 

For given logical address space 2m and page size 2n 

Logical Address Components 
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High-Level Address Translation 
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Simple Page Table 

Lives in Memory 
Page-table base register (PTBR) 
•  Points to the page table  
•  Saved/restored on context switch 

PTBR 

Page-table 



• Protection 
• Dynamic Loading 
• Dynamic Linking 
• Copy-On-Write 

Leveraging Paging 

14 



15 

Full Page Table 

Meta Data about each frame 
Protection R/W/X, Modified, Valid, etc. 
MMU Enforces R/W/X protection    
     (illegal access throws a page faulty) 
 

PTBR 

Page-table 



• Protection 
• Dynamic Loading 
• Dynamic Linking 
• Copy-On-Write 

Leveraging Paging 
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Dynamic Loading 
•  Routine is not loaded until it is called 
•  Better memory-space utilization; unused 

routine is never loaded 
•  No special support from the OS needed 

Dynamic Linking 
•  Routine is not linked until execution time 
•  Locate (or load) library routine when called 
•  AKA shared libraries (e.g., DLLs) 

Dynamic Loading & Linking 
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• Protection 
• Dynamic Loading 
• Dynamic Linking 
• Copy-On-Write 

Leveraging Paging 
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• P1 forks() 
• P2 created with 
- own page table 
- same 

translations 
• All pages 

marked COW    
(in Page Table)  

Copy on Write (COW) 
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Now one process 
tries to write to the 
stack (for example): 
•  Page fault 
•  Allocate new frame 
•  Copy page 
•  Both pages no 

longer COW 

Option 1: fork, then keep executing 
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Before P2 calls 
exec() 
 

Option 2: fork, then call exec 
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stack 

text 
data 

After P2 calls 
exec() 
 
• Allocate new 

frames 
• Load in new 

pages 
• Pages no longer 

COW 
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Memory Consumption: 
•  Internal Fragmentation 

•  Make pages smaller? But then… 
•  Page Table Space: consider 32-bit address 

space, 4KB page size, each PTE 8 bytes 
•  How big is this page table? 
•  How many pages in memory does it need? 

Performance: every data/instruction access 
requires two memory accesses: 
•  One for the page table 
•  One for the data/instruction 

Downsides to Paging 
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• Paged Translation 
• Efficient Address Translation 
•  Multi-Level Page Tables 
•  Inverted Page Tables 
•  TLBs 

Address Translation 
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32-bit machine, 1KB page size 
•  Logical address is divided into: 

–  a page offset of 10 bits (1024 = 2^10) 
–  a page number of 22 bits (32-10) 

•  Since the page table is paged, the page number is 
further divided into: 
–  a 12-bit first index 
–  a 10-bit second index 

•  Thus, a logical address is as follows: 
 
 

Two-Level Paging Example 

page number page offset 

12 10 10 
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Index is an index into: 
•  table of memory frames (if bottom level) 
•  table of page table frames (if multilevel page 

table) 
•  backing store (if page was swapped out) 

Synonyms: 
•  Valid bit == Present bit 
•  Dirty bit == Modified bit 
•  Referenced bit == Accessed bit 

Complete Page Table Entry (PTE) 

28 

Valid Protection	R/W/X Ref Dirty Index



• Paged Translation 
• Efficient Address Translation 
•  Multi-Level Page Tables 
•  Inverted Page Tables 
•  TLBs 

Address Translation 
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So many virtual pages… 

          … comparatively few physical frames 
 
Traditional Page Tables: 
•  map pages to frames 
•  are numerous and sparse 
 
Why not map frames to pages? (How?) 

Inverted Page Table: Motivation 
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Inverted Page Table: Implementation 

Page-table Physical 
Memory 

pid 

page   pid 

Not to scale! Page table << Memory 

Implementation: 
•  1 Page Table for entire system 
•  1 entry per frame in memory 
•  Why don’t we store the frame #? 

page # offset 
Virtual address 

frame 

offset 

pid page 



Tradeoffs: 
↓ memory to store page tables 
↑ time to search page tables  

  
Solution: hashing 
•  hash(page,pid) à PT entry (or chain of 

entries) 
•  What about: 

•  collisions… 
•  sharing…  

 

 
 
 

Inverted Page Table: Discussion 
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• Paged Translation 
• Efficient Address Translation 
•  Multi-Level Page Tables 
•  Inverted Page Tables 
•  TLBs 

Address Translation 

33 



Cache of virtual to  physical page translations 
Major efficiency improvement 
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Access TLB before you access memory. 
Address Translation with TLB 
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Process isolation 
•  Keep a process from touching anyone else’s memory, 

or the kernel’s  
Efficient inter-process communication 

•  Shared regions of memory between processes 
Shared code segments  

•  common libraries used by many different programs 
Program initialization 

•  Start running a program before it is entirely in memory 
Dynamic memory allocation 

•  Allocate and initialize stack/heap pages on demand 

Address Translation Uses! 
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Program debugging 
•  Data breakpoints when address is accessed 

Memory mapped files 
•  Access file data using load/store instructions 

Demand-paged virtual memory 
•  Illusion of near-infinite memory, backed by disk or 

memory on other machines 
Checkpointing/restart 

•  Transparently save a copy of a process, without 
stopping the program while the save happens 

Distributed shared memory 
•  Illusion of memory that is shared between machines 

MORE Address Translation Uses! 
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