
Main Memory:
Address Translation

(Chapter 12-17)
CS 4410

Operating Systems

Physical Reality: different processes/threads share
the same hardware à need to multiplex
•  CPU (temporal)
•  Memory (spatial)
•  Disk and devices (later)

Why worry about memory sharing?
•  Complete working state of process and/or kernel is

defined by its data (memory, registers, disk)
•  Don’t want different processes to have access to

each other’s memory (protection)

Can’t We All Just Get Along?

2

Isolation
Don’t want distinct process states collided in physical
memory (unintended overlap à chaos)

Sharing
Want option to overlap when desired (for efficiency and
communication)

Virtualization
Want to create the illusion of more resources than exist in
underlying physical system

Utilization
Want to best use of this limited resource

Aspects of Memory Multiplexing

3

A Day in the Life of a Program

4

sum.c

source
files

...	
0C40023C	
21035000	
1b80050c	
8C048004	
21047002	
0C400020	

...	
10201000	
21040330	
22500102	

...	

0040 0000

1000 0000

.te
xt

.d

at
a

m
ai

n

max

#include	<stdio.h>	
	
int	max	=	10;	
	
int	main	()	{	
			int	i;	
			int	sum	=	0;	
			add(m,	&sum);	
			printf(“%d”,i);		
			...	
	
}	

Compiler
(+ Assembler + Linker)

executable
sum

“It’s alive!”
Loader

stack

text

 data
heap

process

0x00000000	

pid xxx

0x00400000	

0x10000000	

SP PC
0xffffffff	

max	

addi
jal

Logical view of process memory

5

0xffffffff	

0x00000000	

stack

text

data

heap

TERMINOLOGY ALERT:
Page: the data itself
Frame: physical location

Paged Translation

6

stack

text

data

heap

Process
View

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1
Virtual
Page 0

Virtual
Page N

Frame 0

Frame M

No more
external

fragmentation!

Divide:
•  Physical memory into fixed-sized blocks called frames
•  Logical memory into blocks of same size called pages
Management:
•  Keep track of all free frames.
•  To run a program with n pages, need to find n free frames

and load program

Notice:
•  Logical address space can be noncontiguous!
•  Process given frames when/where available

Paging Overview

7

Address Translation, Conceptually

8

Translation

Physical
Memory

Virtual
Address

Raise
Exception

Physical
Address

Valid

Processor

Data

Data

Invalid

Who does this?

•  Hardware device
•  Maps virtual to physical address (used to

access data)

User Process:
•  deals with virtual addresses
•  Never sees the physical address

Physical Memory:
•  deals with physical addresses
•  Never sees the virtual address

Memory Management Unit (MMU)

9

 red cube is 255th
byte in page 2.

Where is the red cube
in physical memory?

High-Level Address Translation

10

stack

text

data

heap

Process
View

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1
Page 0

Page N

Frame 0

Frame M

Page number – Upper bits

•  Must be translated into a physical frame number

Page offset – Lower bits
•  Does not change in translation

For given logical address space 2m and page size 2n

Logical Address Components

11

page number page offset

m - n n

High-Level Address Translation

12

stack

text

data

heap

Virtual
Memory

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1

0x0000	

0x1000	

0x2000	
0x3000	

0x4000	

0x5000	

0x20FF	

0x0000	
0x1000	
0x2000	
0x3000	
0x4000	

0x5000	

0x6000	
0x????	

Who keeps
track of the
mapping?

à Page Table

0
1
2
3
4
5…

-
3
6
4
8
5

13

Simple Page Table

Lives in Memory
Page-table base register (PTBR)
•  Points to the page table
•  Saved/restored on context switch

PTBR

Page-table

• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging

14

15

Full Page Table

Meta Data about each frame
Protection R/W/X, Modified, Valid, etc.
MMU Enforces R/W/X protection
 (illegal access throws a page faulty)

PTBR

Page-table

• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging

16

Dynamic Loading
•  Routine is not loaded until it is called
•  Better memory-space utilization; unused

routine is never loaded
•  No special support from the OS needed

Dynamic Linking
•  Routine is not linked until execution time
•  Locate (or load) library routine when called
•  AKA shared libraries (e.g., DLLs)

Dynamic Loading & Linking

17

• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging

18

• P1 forks()
• P2 created with
- own page table
- same

translations
• All pages

marked COW
(in Page Table)

Copy on Write (COW)

19

stack

text
data
heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

stack

text
data
heap

P2 Virt Addr Space

COW
X

X
X
X

X

X
X
X

Now one process
tries to write to the
stack (for example):
•  Page fault
•  Allocate new frame
•  Copy page
•  Both pages no

longer COW

Option 1: fork, then keep executing

20

stack

text
data
heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

stack

text
data
heap

P2 Virt Addr Space

stack

COW

X
X
X

X

X

X
X
X

Before P2 calls
exec()

Option 2: fork, then call exec

21

stack

text
data
heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

stack

text
data
heap

P2 Virt Addr Space

stack

text
data
heap

P2 Virt Addr Space

COW
X

X
X
X

X

X
X
X

stack

text
data

After P2 calls
exec()

• Allocate new

frames
• Load in new

pages
• Pages no longer

COW
22

stack

text
data
heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

P2 Virt Addr Space

stack

text

data

COW

Option 2: fork, then call exec

Memory Consumption:
•  Internal Fragmentation

•  Make pages smaller? But then…
•  Page Table Space: consider 32-bit address

space, 4KB page size, each PTE 8 bytes
•  How big is this page table?
•  How many pages in memory does it need?

Performance: every data/instruction access
requires two memory accesses:
•  One for the page table
•  One for the data/instruction

Downsides to Paging

23

• Paged Translation
• Efficient Address Translation
•  Multi-Level Page Tables
•  Inverted Page Tables
•  TLBs

Address Translation

24

25

Physical
Memory

Implementation

Level 1

Level 2

Level 3

Processor

Virtual
Address

OffsetIndex 3Index 2Index 1

Frame Offset

Physical
Address

+ Allocate only PTEs in use
+ Simple memory allocation
− more lookups per memory reference

Multi-Level Page Tables to the
Rescue!

index 1 | index 2 | offset

Frame | Access

Frame

32-bit machine, 1KB page size
•  Logical address is divided into:

–  a page offset of 10 bits (1024 = 2^10)
–  a page number of 22 bits (32-10)

•  Since the page table is paged, the page number is
further divided into:
–  a 12-bit first index
–  a 10-bit second index

•  Thus, a logical address is as follows:

Two-Level Paging Example

page number page offset

12 10 10
26

index 1 index 2 offset

27

Physical
Memory

Implementation

Level 1

Level 2

Level 3

Processor

Virtual
Address

OffsetIndex 3Index 2Index 1

Frame Offset

Physical
Address

+ First Level requires less contiguous memory
− even more lookups per memory reference

This one goes to three!

Index is an index into:
•  table of memory frames (if bottom level)
•  table of page table frames (if multilevel page

table)
•  backing store (if page was swapped out)

Synonyms:
•  Valid bit == Present bit
•  Dirty bit == Modified bit
•  Referenced bit == Accessed bit

Complete Page Table Entry (PTE)

28

Valid Protection	R/W/X Ref Dirty Index

• Paged Translation
• Efficient Address Translation
•  Multi-Level Page Tables
•  Inverted Page Tables
•  TLBs

Address Translation

29

So many virtual pages…

 … comparatively few physical frames

Traditional Page Tables:
•  map pages to frames
•  are numerous and sparse

Why not map frames to pages? (How?)

Inverted Page Table: Motivation

30

physical
address space

P1 virtual
address space

P2
virtual

address
space

P3 virtual
address space P5 virtual

address space

P4
virtual
address
space

31

Inverted Page Table: Implementation

Page-table Physical
Memory

pid

page pid

Not to scale! Page table << Memory

Implementation:
•  1 Page Table for entire system
•  1 entry per frame in memory
•  Why don’t we store the frame #?

page # offset
Virtual address

frame

offset

pid page

Tradeoffs:
↓ memory to store page tables
↑ time to search page tables

Solution: hashing
•  hash(page,pid) à PT entry (or chain of

entries)
•  What about:

•  collisions…
•  sharing…

Inverted Page Table: Discussion

32

• Paged Translation
• Efficient Address Translation
•  Multi-Level Page Tables
•  Inverted Page Tables
•  TLBs

Address Translation

33

Cache of virtual to physical page translations
Major efficiency improvement

34

Physical
Memory

Frame Offset

Physical
Address

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Virtual
Page

Page
Frame Access

Matching Entry

Page Table
Lookup

Translation Lookaside Buffer (TLB)

Access TLB before you access memory.
Address Translation with TLB

35

TLB

Physical
Memory

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Hit
Valid

Processor Page
Table

Data

Data

Miss Invalid

Offset

Trick: access TLB
while you access the cache.

Process isolation
•  Keep a process from touching anyone else’s memory,

or the kernel’s
Efficient inter-process communication

•  Shared regions of memory between processes
Shared code segments

•  common libraries used by many different programs
Program initialization

•  Start running a program before it is entirely in memory
Dynamic memory allocation

•  Allocate and initialize stack/heap pages on demand

Address Translation Uses!

36

Program debugging
•  Data breakpoints when address is accessed

Memory mapped files
•  Access file data using load/store instructions

Demand-paged virtual memory
•  Illusion of near-infinite memory, backed by disk or

memory on other machines
Checkpointing/restart

•  Transparently save a copy of a process, without
stopping the program while the save happens

Distributed shared memory
•  Illusion of memory that is shared between machines

MORE Address Translation Uses!

37

