
Deadlocks:
Detection & Avoidance

(Chapter 32)
CS 4410

Operating Systems

The slides are the product of many rounds of teaching CS 4410
by Professors Agarwal, Bracy, George, Sirer, and Van Renesse.

Exclusive (one-at-a-time) computer resources
•  printers, CPU, memory, shared region to update,
•  Processes need access to these resources
•  Acquire resource

•  If resource is available, access is granted
•  If not available, the process is blocked

•  Use resource
•  Release resource

Undesirable scenario:
•  Process A acquires resource 1, waits for resource 2
•  Process B acquires resource 2, waits for resource 1

 ➛ Deadlock!

System Model

2

Classic Deadlock

3

Example 1: Semaphores

4

semaphore:	 		
file_mutex	=	1					 	/*	protects	file	resource	*/	
printer_mutex	=	1		 	/*	protects	printer	resource	*/	

{	
			/*	initial	compute	*/	
	

			P(file_mutex)	
			P(printer_mutex)	
	

			/*	use	resources	*/	
	

			V(printer_mutex)	
			V(file_mutex)	
}	

{	
			/*	initial	compute	*/	
	

			P(printer_mutex)	
			P(file_mutex)	
	

			/*	use	resources	*/	
	

			V(file_mutex)	
			V(printer_mutex)	
}	

Process	B	code:	Process	A	code:	

Example 2: Dining Philosophers

5

class	Philosopher:	
chopsticks[N]	=	[Semaphore(1),…]	
	
def	__init__(mynum)	
		self.id	=	mynum	
	
def	eat():	
			right	=	self.id	
			left	=	(self.id+1)	%	N	
			while	True:	

	 	P(chopsticks[left])	
	 	P(chopsticks[right])	

						 	#	om	nom	nom	
	 	V(chopsticks[right])	
	 	V(chopsticks[left])	

•  Philosophers go out for Chinese food
•  Need exclusive access to 2 chopsticks to eat food

Starvation: thread waits indefinitely

Deadlock: circular waiting for resources
 Deadlock ➛ starvation, but not vice
versa

Subject to deadlock ≠ will deadlock
➛ Testing is not the solution
➛ System must be deadlock-free by design

Starvation vs. Deadlock

6

Necessary conditions for deadlock to exist:
(1) Mutual Exclusion / Bounded Resources

 ≥ 1 resource must be held in non-sharable mode
(2) Hold and wait

 ∃ a process holding 1 resource & waiting for another
(3) No preemption

Resources cannot be preempted
(4) Circular wait
∃ a set of processes {P1, P2, … PN}, such that
P1 is waiting for P2, P2 for P3, …. and PN for P1

ALL FOUR must hold for deadlock to occur.
Note: it’s not just about locks!

Four Conditions for Deadlock

7 [Coffman 1971]

Truck A has to wait for Truck B to move
Is this a Deadlock?

8

1. Mutual Exclusion
2. Hold & Wait
3. No Preemption
4. Circular Wait

Deadlock?

Gridlock
Is this a Deadlock?

9

1. Mutual Exclusion
2. Hold & Wait
3. No Preemption
4. Circular Wait

Deadlock?

Gridlock
Is this a Deadlock?

10

1. Mutual Exclusion
2. Hold & Wait
3. No Preemption
4. Circular Wait

Deadlock?

Gridlock
Is this a Deadlock?

11

1. Mutual Exclusion
2. Hold & Wait
3. No Preemption
4. Circular Wait

Deadlock?

Create a Wait-For Graph
•  1 Node per Process
•  1 Edge per Waiting Process, P

 (from P to the process it’s waiting for)

Note: graph holds for a single instance in time

Cycles in graph indicate deadlock

Deadlock Detection

12

3 1

2

Find a node with no outgoing edges
•  Erase node
•  Erase any edges coming into it

Intuition: this was a process waiting on nothing.
It will eventually finish, and anyone waiting on
it will no longer be waiting.

Erase whole graph ⬌ graph has no cycles
Graph remains ⬌ deadlock
This is a graph reduction algorithm.

Testing for cycles (= deadlock)

13

Graph can be fully reduced, hence there was
no deadlock at the time the graph was drawn.
(Obviously, things could change later!)

Graph Reduction: Example 1

14

8

6 5

0

3

4 9

10

11 7

12

1

2

Find node w/o outgoing edges
Erase node
Erase edges coming into it

No node with no outgoing edges…
Irreducible graph, contains a cycle

 (only some processes are in the cycle)
➛ deadlock

Graph Reduction: Example 2

15

3

10

11

7

12

Does order of reduction matter?

Answer: No.
Explanation: an unchosen candidate at
one step remains a candidate for later
steps. Eventually—regardless of order—
every node will be reduced.

Question #1

16

If a system is deadlocked, could the deadlock
go away on its own?

Answer: No, unless someone kills one of the threads
or something causes a process to release a resource.
Explanation: Many real systems put time limits on
“waiting” precisely for this reason. When a process
gets a timeout exception, it gives up waiting; this can
eliminate the deadlock.
Process may be forced to terminate itself because
often, if a process can’t get what it needs, there are
no other options available!

Question #2

17

Suppose a system isn’t deadlocked at time T.
Can we assume it will still be free of deadlock
at time T+1?

Answer: No
Explanation: the very next thing it might do
is to run some process that will request a
resource…
 … establishing a cyclic wait
 … and causing deadlock

Question #3

18

Let’s not deadlock, okay?
•  Deadlock Prevention: make it impossible

• Prevent 1 of the 4 necessary conditions
from arising…. … disaster averted!

Proactive Responses to Deadlocks

19

#1: Mutual exclusion / Bounded Resources
• Make resources sharable without locks?
• Make more resources available?
• Not always possible (e.g., printers)

Deadlock Prevention: Negate 1 of 4

20

#2: Hold and wait
Don’t hold resources when waiting for another

• Re-write code:

• Request all resources before execution begins
-  Processes don’t know what they need ahead of time
-  Starvation (if waiting on many popular resources)
-  Low utilization (need resource only for a bit)

Optimization: Release all resources before requesting
anything new? Still has last two problems 😞"

Deadlock Prevention: Negate 1 of 4

21

Module::	foo()		{	
		lock.acquire();	
		doSomeStuff();	
		otherModule->bar();	
		doOtherStuff();	
		lock.release();	}		

Module::	foo()		{	
			doSomeStuff();	
			otherModule->bar();	
			doOtherStuff();			
}	

have these 2 fns acquire & release

#3: No preemption
Allow runtime system to pre-empt:
1.  Requesting processes’ resources if all not available
2.  Resources of waiting processes to satisfy request

Good when easy to save/restore state of resource
•  CPU registers
•  memory virtualization (page memory to disk,

maybe even page tables)

Deadlock Prevention: Negate 1 of 4

22

#4: Circular Wait
•  Single lock for entire system?
•  Impose partial ordering on resources,
request in order

Intuition: Cycle requires an edge from low to
high, and from high to low numbered node,
or to same node

Deadlock Prevention: Negate 1 of 4

23

1

2

3

4 1 2 1

Preventing Dining Philosophers Deadlock?

24

1. Bounded
Resources

2. Hold & Wait
3. No Pre-emption
4. Circular Wait

Can we prevent one
of these conditions?
Ideas?

class	Philosopher:	
chopsticks[N]	=	[Semaphore(1),…]	
	
def	__init__(mynum)	
		self.id	=	mynum	
	
def	eat():	
			right	=	self.id	%	N	
			left	=	(self.id	+	1)	%	N	
			while	True:	

	 	P(left)	
	 	P(right)	

						 	#	om	nom	nom	
	 	V(right)	
	 	V(left)	

Let’s not deadlock, okay?
•  Deadlock Prevention: make it impossible

• Prevent 1 of the 4 necessary conditions
from arising…. … disaster averted!

• Deadlock Avoidance: make it not
happen
• Think before you act

Proactive Responses to Deadlocks

25

How do cars do it?
• Try not to block an intersection
• Don’t drive into the intersection if you can
see that you’ll be stuck there.

Why does this work?
• Prevents a wait-for relationship
• Cars won’t take up a resource if they see
they won’t be able to acquire the next one…

Deadlock Avoidance

26

Safe state:
•  It is possible to avoid deadlock and eventually grant all

resource requests by careful scheduling
•  May require delaying a resource request even when

resources are available!
Unsafe state:

•  Some sequence of resource requests can result in
deadlock even with careful scheduling

Doomed state:
•  All possible computations lead to deadlock

Deadlocked state:
•  System has at least one deadlock

Deadlock Dynamics

27

Possible System States

28

Safe

Unsafe
Deadlock

•  A state is said to be safe, if there exists a sequence
of processes [P1, P2,…, Pn] such that for each Pi the
resources that Pi can still request can be satisfied by
the currently available resources plus the resources
held by all Pj where j < i

•  State is safe b/c OS can definitely avoid deadlock
• block new requests until safe order is executed

•  Avoids circular wait condition from ever happening
•  Process waits until safe state is guaranteed

Safe State

29

Suppose: 12 tape drives and 3 processes: p0, p1, and p2

Current state is safe because a safe sequence exists: [p1, p0, p2]

-  p1 can complete with remaining resources
-  p0 can complete with remaining+p1
-  p2 can complete with remaining+p1+p0

What if p2 requests 1 drive? Grant or not?

Safe State Example

30

max	
need	

current	
usage	

could	still	
ask	for	

p0	 10	 5	 5	
p1	 4	 2	 2	
p2	 9	 2	 7	

3	drives	remain	

•  from 10,000 feet:
• Process declares its worst-case needs,

asks for what it “really” needs, a little at a
time

•  Algorithm decides when to grant requests
-  Build a graph assuming request granted
- Reducible? yes: grant request, no: wait

Problems:
• Fixed number of processes
• Need worst-case needs ahead of time
• Expensive

Banker’s Algorithm

31

If neither avoidance or prevention is
implemented, deadlocks can (and will)
occur. Now what?

Detect & Recover

Reactive Responses to Deadlocks

32

•  Track resource allocation (who has what)
•  Track pending requests (who’s waiting for

what)

When should we run this?

•  For each request?
•  After each unsatisfiable request?
•  Hourly?
•  Once CPU utilization drops below a

threshold?
•  Some combination of these?

Deadlock Detection

33

Blue screen & reboot?

Kill one/all deadlocked processes
•  Pick a victim
•  Terminate
•  Repeat if needed

Preempt resource/processes till deadlock
broken
•  Pick a victim (# resources held, execution time)
•  Rollback (partial or total, not always possible)
•  Starve (prevent process from being executed)

Deadlock Recovery

34

Prevent
•  Negate one of the four necessary

conditions.
Avoid

•  Schedule processes really carefully (?)
Detect

•  Determine if a deadlock has occurred
Recover
•  Kill or rollback

Summary

35

