
Synchronization
(Chapters 28-31)

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

2

• Foundations
• Semaphores
• Monitors & Condition

Variables

•  Race Conditions
•  Critical Sections
•  Example: Too Much Milk
•  Basic Hardware Primitives
•  Building a SpinLock

3

Synchronization Foundations

Process:
• Privilege Level
• Address Space
• Code, Data, Heap
• Shared I/O resources
• One or more Threads:

•  Stack
•  Registers
•  PC, SP

Recall: Process vs. Thread

4

Shared
amongst
threads

2 threads updating a shared variable amount	
•  One thread wants to decrement amount by $10K
•  Other thread wants to decrement amount by 50%

What happens when both threads are running?

Two Theads, One Variable

5

 Memory

. . .
amount	-=	10,000;	
. . .

. . .
amount	*=	0.5;	
. . .

100,000 amount

T1	 T2	

Might execute like this:
Two Theads, One Variable

6

 Memory

.	.	.	
r1	=	load	from	amount	
r1	=	r1	–	10,000	
store	r1	to	amount	
.	.	.	

.	.	.	
r2	=	load	from	amount	
r2	=	0.5	*	r2	
store	r2	to	amount	
.	.	.	

40,000 amount

Or vice versa (T1 then T2 à 45,000)…
 either way is fine…

T1	

T2	

Or it might execute like this:
Two Theads, One Variable

7

 Memory

.	.	.	
r1	=	load	from	amount	
r1	=	r1	–	10,000	
store	r1	to	amount	
.	.	.	

.	.	.	
r2	=	load	from	amount	
	
.	.	.	
	
r2	=	0.5	*	r2	
store	r2	to	amount	
.	.	.	

50,000 amount

Lost Update!
Wrong ..and very difficult to debug

T1	

T2	

= timing dependent error involving shared state
•  Once thread A starts, it needs to “race” to finish
•  Whether race condition happens depends on
thread schedule

•  Different “schedules” or “interleavings” exist
 (total order on machine instructions)

All possible interleavings should

be safe!

Race Conditions

8

1.  Program execution depends on the possible
interleavings of threads’ access to shared
state.

2.  Program execution can be nondeterministic.

3.  Compilers and processor hardware can
reorder instructions.

Problems with Sequential Reasoning

9

•  Number of possible interleavings is huge
•  Some interleavings are good
•  Some interleavings are bad:

•  But bad interleavings may rarely happen!
•  Works 100x ≠ no race condition

•  Timing dependent: small changes hide bugs

(recall: Therac-25)

Race Conditions are Hard to Debug

10

• 2 concurrent enqueue() operations?
• 2 concurrent dequeue() operations?

What could possibly go wrong?

Example: Races with Queues

11

tail	 head	

Must be atomic due to shared memory access

Goals
Safety: 1 thread in a critical section at time
Liveness: all threads make it into the CS if desired
Fairness: equal chances of getting into CS
 … in practice, fairness rarely guaranteed

Critical Section

12

.	.	.	
CSEnter();	
		Critical	section	
CSExit();	
.	.	.	

.	.	.	
CSEnter();	
		Critical	section	
CSExit();	
.	.	.	

T1	 T2	

13

Too Much Milk:
Safety, Liveness, and Fairness

with no hardware support

2 roommates, fridge always stocked with milk
•  fridge is empty → need to restock it
•  don’t want to buy too much milk

Caveats
•  Only communicate by a notepad on the fridge
•  Notepad has cells with names, like variables:
 out_to_buy_milk

TASK: Write the pseudo-code to ensure that at
most one roommate goes to buy milk

Too Much Milk Problem

14

0	

Solution #1: No Protection

15

	
if	fridge_empty():	
	buy_milk()	

	
if	fridge_empty():	
	buy_milk()	

T1	 T2	

Safety: Only one person (at most) buys milk
Liveness: If milk is needed, someone
eventually buys it.
Fairness: Roommates equally likely to go to
buy milk.

Safe? Live? Fair?

Solution #2: add a boolean flag

16

	
while(outtobuymilk):	
			do_nothing();	
if	fridge_empty():	
			outtobuymilk	=	1	
			buy_milk()	
	outtobuymilk	=	0	

	
while(outtobuymilk):		
	do_nothing();	

if	fridge_empty():	
	outtobuymilk	=	1	
	buy_milk()	
	outtobuymilk	=	0	

T1	 T2	

Safety: Only one person (at most) buys milk
Liveness: If milk is needed, someone eventually buys it.
Fairness: Roommates equally likely to go to buy milk.
Safe? Live? Fair?

outtobuymilk initially false

Solution #3: add two boolean flags!

17

	
blues_got_this	=	1	
if	!reds_got_this	and	
					fridge_empty():	
	buy_milk()	

blues_got_this	=	0	

	
reds_got_this	=	1	
if	!blues_got_this	and			
			fridge_empty():	
	buy_milk()	

reds_got_this	=	0	

T1	 T2	

one for each roommate (initially false):
 blues_got_this,	reds_got_this	

Safety: Only one person (at most) buys milk
Liveness: If milk is needed, someone eventually buys it.
Fairness: Roommates equally likely to go to buy milk.
Safe? Live? Fair?

Solution #4: asymmetric flags!

18

	
blues_got_this	=	1	
while	reds_got_this:	
				do_nothing()	
if	fridge_empty():	
	buy_milk()	

blues_got_this	=	0	

	
reds_got_this	=	1	
if	not	blues_got_this:		
	if	fridge_empty():	
			buy_milk()	

reds_got_this	=	0	
	

T1	 T2	

‒ complicated (and this is a simple example!)
‒ hard to ascertain that it is correct
‒ asymmetric code is hard to generalize & unfair

Safe? Live? Fair?

one for each roommate (initially false):
 blues_got_this,	reds_got_this	

Last Solution: Peterson’s Solution

19

	

blues_got_this	=	1	
turn	=	red	
while	(reds_got_this		
	and	turn==red):	

				do_nothing()	
if	fridge_empty():	
	buy_milk()	

blues_got_this	=	0	

	

reds_got_this	=	1	
turn	=	blue	
while	(blues_got_this		
	and	turn==blue):	

				do_nothing()	
if	fridge_empty():	
	buy_milk()	

reds_got_this	=	0	

T1	 T2	

another flag turn	{blue,	red}	

‒ complicated (and this is a simple example!)
‒ hard to ascertain that it is correct
‒ hard to generalize

Safe? Live? Fair?

•  HW primitives to provide mutual exclusion
•  A machine instruction (part of the ISA!) that:

•  Reads & updates a memory location
•  Is atomic (other cores can’t see intermediate state)

•  Example: Test-And-Set
 1 instruction with the following semantics:

sets the value to 1, returns former value

Hardware Solution

20

ATOMIC	int	TestAndSet(int	*var)	{	
	int	oldVal	=	*var;	
	*var	=	1;	
	return	oldVal;	

}	

Shared variable: int	buyingmilk, initially
0

Buying Milk with TAS

21

	
while(TAS(&buyingmilk))	
					do_nothing();	
	if	fridge_empty():	
	buy_milk()	

buyingmilk	:=	0	

	
while(TAS(&buyingmilk))	
					do_nothing();	
	if	fridge_empty():	
	buy_milk()	

buyingmilk	:=	0	

T1	 T2	

A little hard on the eyes. Can we do better?

Enter: Locks!

22

acquire(int	*lock)	{	
			while(test_and_set(lock))	
			/*	do	nothing	*/;	

}	

release(int	*lock)	{	
	*lock	=	0;	
}	

Shared lock: int	buyingmilk, initially 0
Buying Milk with Locks

23

	
acquire(&buyingmilk);	
	if	fridge_empty():	
	buy_milk()	

release(&buyingmilk);	

	
acquire(&buyingmilk);	
	if	fridge_empty():	
	buy_milk()	

release(&buyingmilk);	

T1	 T2	

Now we’re getting somewhere!
Is anyone not happy with this?

Thou
shalt not
busy-wait!

24

Participants not in critical section must spin
 → wasting CPU cycles
•  Replace the “do nothing” loop with a “yield()”?
•  Threads would still be scheduled and descheduled

(context switches are expensive)

Need a better primitive:
• allows one thread to pass through
• all others sleep until they can execute again

Not just any locks: SpinLocks

25

26

• Foundations
• Semaphores
• Monitors & Condition

Variables

•  Definition
•  Binary Semaphores
•  Counting Semaphores
•  Classic Sync. Problems (w/Semaphores)
- Producer-Consumer (w/ a bounded buffer)
- Readers/Writers Problem

•  Classic Mistakes with Semaphores

27

Semaphores

Dijkstra introduced in the THE Operating System

Stateful:
•  a value (incremented/decremented atomically)
•  a queue
•  a lock

Interface:
•  Init(starting value)
•  P (procure): decrement, “consume” or “start using”
•  V (vacate): increment, “produce” or “stop using”

No operation to read the value!

What is a Semaphore?

28

[Dijkstra 1962]

Dutch 4410: P = Probeer (‘Try'), V = Verhoog ('Increment', 'Increase by one')

Semantics of P and V

29

P()	{	
				while(n	<=	0)		
							;	
				n	-=	1;	
}	

V()	{	
				n	+=	1;	
}	

P():
•  wait until value >0	
•  when so, decrement

VALUE by 1

V():
•  increment VALUE by 1

These are the semantics,
but how can we make this efficient?
(doesn’t this look like a spinlock?!?)

Implementation of P and V

30

P()	{	
				while(n	<=	0)		
							;	
				n	-=	1;	
}	

V()	{	
				n	+=	1;	
}	

P():
• block (sit on Q) til n >	0
• when so, decrement VALUE

by 1

V():
•  increment VALUE by 1
•  resume a thread waiting on

Q (if any)

Okay this looks efficient, but how is this safe?
(that’s what the lock is for – both P&V need to TAS the lock)

Semaphore value is either 0 or 1
•  Used for mutual exclusion

(semaphore as a more efficient lock)
•  Initially 1 in that case

Binary Semaphore

31

	
S.P()	
CriticalSection()	
S.V()	

	
S.P()	
CriticalSection()	
S.V()	

T1	 T2	

Semaphore	S	
S.init(1)	

Example: A simple mutex

S.P()	
CriticalSection()	
S.V()	

Semaphore	S	
S.init(1)	

P()	{	
				while(n	<=	0)		
							;	
				n	-=	1;	
}	

V()	{	
				n	+=	1;	
}	

32

Sema count can be any integer
•  Used for signaling or counting resources
•  Typically:

•  one thread performs P() to await an event
• another thread performs V() to alert waiting

thread that event has occurred

Counting Semaphores

33

pkt	=	get_packet()	
enqueue(packetq,	pkt);	
packetarrived.V();	

packetarrived.P();	
pkt	=	dequeue(packetq);	
print(pkt);	

T1	 T2	

Semaphore	packetarrived	
packetarrived.init(0)	

PrintingThread:	ReceivingThread:	

• must be initialized!
• keeps state
•  reflects the sequence of past operations
•  >0 reflects number of future P operations

that will succeed

Not possible to:
•  read the count
• grab multiple semaphores at same

time
• decrement/increment by more than 1!

Semaphore’s count:

34

2+ threads communicate:
some threads produce data that others consume

Bounded buffer: size —N entries—

Producer process writes data to buffer
•  Writes to in and moves rightwards

Consumer process reads data from buffer
•  Reads from out and moves rightwards

Producer-Consumer Problem

35

0 N-1	

in	 out	

•  Pre-processor produces source file for
compiler’s parser

•  Data from bar-code reader consumed by
device driver

•  File data: computer à printer spooler à line
printer device driver

•  Web server produces data consumed by
client’s web browser

•  “pipe” (|) in Unix >cat	file	|	sort	|	more	

Producer-Consumer Applications

36

Starter Code: No Protection

37

	

//	add	item	to	buffer	
void	produce(int	item)	{	
		buf[in]	=	item;	
		in	=	(in+1)%N;	
}	

	

//	remove	item	
int	consume()	{	
		int	item	=	buf[out];	
		out	=	(out+1)%N;	
		return	item;	
}	

Problems:
1.  Unprotected shared state (multiple producers/consumers)
2.  Inventory:

•  Consumer could consume when nothing is there!
•  Producer could overwrite not-yet-consumed data!

Shared:	
int	buf[N];	
int	in,	out;	

Part 1: Guard Shared Resources

38

//	add	item	to	buffer	
void	produce(int	item)	
{	
		mutex_in.P();	
		buf[in]	=	item;	
		in	=	(in+1)%N;			
		mutex_in.V();	

	
}	

//	remove	item	
int	consume()		
{	
		mutex_out.P();	
		int	item	=	buf[out];	
		out	=	(out+1)%N;	
		mutex_out.V();	
		return	item;	
}	

Shared:	
int	buf[N];	
int	in	=	0,	out	=	0;	
Semaphore	mutex_in(1),	mutex_out(1);	

now atomic

Part 2: Manage the Inventory

39

void	produce(int	item)	
{	
			empty.P();	//need space
 mutex_in.P();	
			buf[in]	=	item;	
			in	=	(in+1)%N;	
	 	mutex_in.V();	
	filled.V();	//new item!

}	

int	consume()		
{	
			filled.P();	//need item		
			mutex_out.P();	
			int	item	=	buf[out];	
			out	=	(out+1)%N;	
			mutex_out.V();	
	empty.V();	//more space!

			return	item;	
}	

Shared:	
int	buf[N];	
int	in	=	0,	out	=	0;	
Semaphore	mutex_in(1),	mutex_out(1);	
Semaphore	empty(N),	filled(0);	

Sanity checks

40

void	produce(int	item)	
{	
			empty.P();	//need space
 mutex_in.P();	
			buf[in]	=	item;	
			in	=	(in+1)%N;	
	 	mutex_in.V();	
	filled.V();	//new item!

}	

int	consume()		
{	
			filled.P();	//need item		
			mutex_out.P();	
			int	item	=	buf[out];	
			out	=	(out+1)%N;	
			mutex_out.V();	
	empty.V();	//more space!

			return	item;	
}	

Shared:	
int	buf[N];	
int	in	=	0,	out	=	0;	
Semaphore	mutex_in(1),	mutex_out(1);	
Semaphore	empty(N),	filled(0);	

1.  Is there a V for every P?
2. Mutex initialized to 1?
3. Mutex P&V in same thread?

Pros:
•  Live & Safe (& Fair)
•  No Busy Waiting! (is this true?)
•  Scales nicely

Cons:
•  Still seems complicated: is it correct?
•  Not so readable
•  Easy to introduce bugs

Producer-consumer: How did we do?

41

Invariant

42

void	produce(int	item)	
{	
			empty.P();	//need space
 mutex_in.P();	
			buf[in%N]	=	item;	
			in	+=	1;	
	 	mutex_in.V();	
	filled.V();	//new item!

}	

int	consume()		
{	
			filled.P();	//need item		
			mutex_out.P();	
			int	item	=	buf[out%N];	
			out	+=	1;	
			mutex_out.V();	
	empty.V();	//more space!

			return	item;	
}	

Shared:	
int	buf[N];	
int	in	=	0,	out	=	0;	
Semaphore	mutex_in(1),	mutex_out(1);	
Semaphore	empty(N),	filled(0);	

0 ≤ in – out ≤ N

Models access to a database: shared data that
some threads read and other threads write
At any time, want to allow:
•  multiple concurrent readers —OR—(exclusive)
•  only a single writer

Example: making an airline reservation
•  Browse flights: web site acts as a reader
•  Reserve a seat: web site has to write into

database (to make the reservation)

Readers-Writers Problem

43

[Courtois+ 1971]

N threads share 1 object in memory
•  Some write: 1 writer active at a time
•  Some read: n readers active simultaneously

Insight: generalizes the critical section concept

Implementation Questions:
1.  Writer is active. Combo of readers/writers arrive.

 Who should get in next?
2. Writer is waiting. Endless of # of readers come.

 Fair for them to become active?

For now: back-and-forth turn-taking:
•  If a reader is waiting, readers get in next
•  If a writer is waiting, one writer gets in next

Readers-Writers Specifications

44

Readers-Writers Solution

45

void	write()		 												
			rw_lock.P();	

				.	.	.	
				/*	perform	write	*/	

	.	.	. 		
	rw_lock.V();	

}	

int	read()		
{	
				count_mutex.P();	
				rcount++;	
				if	(rcount	==	1)	
	 						rw_lock.P();	
				count_mutex.V();	
				.	.	.	
				/*	perform	read	*/	
				.	.	.	
				count_mutex.P();	
				rcount--;	
				if	(rcount	==	0)	
	 						rw_lock.V();	
	 		count_mutex.V();	
}	

Shared:	
int	rcount	=	0;	
Semaphore	count_mutex(1);		
Semaphore	rw_lock(1);	

If there is a writer:
•  First reader blocks on rw_lock	
•  Other readers block on mutex	

Once a reader is active, all readers get to go through
•  Which reader gets in first?

The last reader to exit signals a writer
•  If no writer, then readers can continue

If readers and writers waiting on rw_lock & writer exits
•  Who gets to go in first?

Readers-Writers: Understanding the Solution

46

When readers active no writer can enter ✔ ︎
•  Writers wait @ rw_lock.P()

When writer is active nobody can enter ✔ ︎
•  Any other reader or writer will wait (where?)

Back-and-forth isn’t so fair:
•  Any number of readers can enter in a row
•  Readers can “starve” writers

Fair back-and-forth semaphore solution is tricky!
•  Try it! (don’t spend too much time…)

Readers-Writers: Assessing the Solution

47

•  Definition
•  Binary Semaphores
•  Counting Semaphores
•  Classic Sync. Problems (w/Semaphores)
- Producer-Consumer (w/ a bounded buffer)
- Readers/Writers Problem

•  Classic Mistakes with Semaphores

48

Semaphores

Classic Semaphore Mistakes

49

P(S)	
CS	
P(S)	

I	

V(S)	
CS	
V(S)	

P(S)	
CS	

J	

K	

P(S)	
if(x)	return;	
CS	
V(S)	

L	

	I	stuck	on	2nd	P().	Subsequent	
processes	freeze	up	on	1st	P().	

Undermines	mutex:		
• 	J	doesn’t	get	permission	via	P()		
• 	“extra”	V()s	allow	other	processes	
into	the	CS	inappropriately	

Next	call	to	P()	will	freeze	up.	
Confusing	because	the	other	process	
could	be	correct	but	hangs	when	you	
use	a	debugger	to	look	at	its	state!	

Conditional	code	can	change	code	
flow	in	the	CS.	Caused	by	code	

updates	(bug	fixes,	etc.)	by	someone	
other	than	original	author	of	code.	

⬅︎typo

⬅︎typo

⬅︎omission

“During system conception … we used the
semaphores in two completely different ways.
The difference is so marked that, looking back,
one wonders whether it was really fair to
present the two ways as uses of the very same
primitives. On the one hand, we have the
semaphores used for mutual exclusion, on the
other hand, the private semaphores.”

— Dijkstra “The structure of the ’THE’-
Multiprogramming System” Communications of the
ACM v. 11 n. 5 May 1968.

Semaphores Considered Harmful

50

These are “low-level” primitives. Small errors:
•  Easily bring system to grinding halt
•  Very difficult to debug

Two usage models:
•  Mutual exclusion: “real” abstraction is a critical

section
•  Communication: threads use semaphores to

communicate (e.g., bounded buffer example)
Simplification: Provide concurrency support in
compiler
à Enter Monitors

Semaphores NOT to the rescue!

51

52

• Foundations
• Semaphores
• Monitors &

Condition Variables

Producer-Consumer
with locks

53

char	buf[SIZE];	
int	n=0,	tail=0,	head=0;	
lock	l;	

produce(char	ch)	{	
		l.acquire()	
			while(n	==	SIZE):	
					l.release();	l.acquire()	
		buf[head]	=	ch;	
		head	=	(head+1)%SIZE;	
		n++;	

			l.release();	
}	

char	consume()	{	
		l.acquire()	
		while(n	==	0):	
					l.release();	l.acquire()	
		ch	=	buf[tail];	
		tail	=	(tail+1)%SIZE;			
		n--;	
		l.release;	
		return	ch;	

}	

Thou
shalt not
busy-wait!

54

Multiple	Processors		 Hardware	Interrupts	
HARDWARE

Interrupt	Disable	 Atomic	R/W	Instructions	
ATOMIC INSTRUCTIONS

SYNCHRONIZATION OBJECTS

CONCURRENT APPLICATIONS
. . .

Semaphores	Locks	 Condition	Variables	 Monitors	

55

• Definition
•  Simple Monitor Example
•  Implementation
• Classic Sync. Problems with Monitors
- Bounded Buffer Producer-Consumer
- Readers/Writers Problems
- Barrier Synchronization

•  Semantics & Semaphore Comparisons
• Classic Mistakes with Monitors

56

Monitors & Condition Variables

Only one thread can execute monitor procedure at any time
(aka “in the monitor”)

Monitor Semantics guarantee mutual exclusion

57

Monitor	monitor_name	
{	
			// shared variable declarations
					
			procedure	P1()	{	
			}	
	
			procedure	P2()	{	
			}	
			.	
			.	
			procedure	PN()	{	
			}	
	
			initialization_code()	{	
			}	
}	

Monitor	bounded_buffer	
{	
	int	in=0,	out=0,	nElem=0;	
	int	buffer[N];	

					
			consume()	{	
			}	
	
			produce()	{	
			}	
	
}	

in the abstract:

for example:

only one operation

 can execute at a time

can only access shared
data via a monitor

procedure

Producer-Consumer Revisited

58

Problems:
1.  Unprotected shared state (multiple producers/consumers)

2.  Inventory:
•  Consumer could consume when nothing is there!
•  Producer could overwrite not-yet-consumed data!

Solved via Monitor.
Only 1 thread allowed in at a time.

•  Only one thread can execute monitor procedure at any time
•  If second thread invokes monitor procedure at that time, it will

block and wait for entry to the monitor.
•  If thread within a monitor blocks, another can enter

What about these?
à Enter Condition Variables

A mechanism to wait for events

3 operations on Condition	Variable	x	
•  x.wait(): sleep until woken up (could wake

up on your own)
•  x.signal(): wake at least one process

waiting on condition (if there is one). No
history associated with signal.

•  x.broadcast(): wake all processes waiting on
condition

Condition Variables

59 !! NOT the same thing as UNIX wait & signal !!

You must hold the monitor lock to call these
operations.

 To wait for some condition:
	while	not	some_predicate():	
	 	CV.wait()	

•  atomically releases monitor lock & yields processor
•  as CV.wait() returns, lock automatically reacquired

When the condition becomes satisfied:

 CV.broadcast():	wakes up all threads
 CV.signal():	wakes up at least one thread

Using Condition Variables

60

Condition Variables Live in the Monitor

61

1. Shared Private Data
•  the resource
•  can only be accessed from in the monitor

2. Procedures operating on data
•  gateway to the resource
•  can only act on data local to the monitor

3. Synchronization primitives
•  among threads that access the procedures

[Hoare 1974]

Abstract Data Type for handling
shared resources, comprising:

Types of Wait Queues

62

Monitors have two kinds of “wait” queues
• Entry to the monitor: a queue of

threads waiting to obtain mutual exclusion &
enter

• Condition variables: each condition
variable has a queue of threads waiting on
the associated condition

Kid and Cook Threads

63

kid_main()	{				
					
			play_w_legos()	
			BK.kid_eat()	
	bathe()		
	make_robots()	
	BK.kid_eat()	

			facetime_Karthik()	
			facetime_oma()	
			BK.kid_eat()		
}	

cook_main()	{	
		
		wake()	
		shower()	
		drive_to_work()	
		while(not_5pm)	
				BK.makeburger()	
		drive_to_home()	
		watch_got()	
		sleep()	
}	

Monitor	BurgerKing	{	
		Lock	mlock	
	
		int	numburgers	=	0	
		condition	hungrykid	
	
		kid_eat:	
			with	mlock:	
			while	(numburgers==0)	
						hungrykid.wait()	
			numburgers	-=	1	

			
		makeburger:	
			with	mlock:	
			++numburger	
			hungrykid.signal()	

}	

Ready Running

• Definition
•  Simple Monitor Example
•  Implementation
• Classic Sync. Problems with Monitors
- Bounded Buffer Producer-Consumer
- Readers/Writers Problems
- Barrier Synchronization

•  Semantics & Semaphore Comparisons
• Classic Mistakes with Monitors

64

Monitors & Condition Variables

Can be embedded in programming language:
•  Compiler adds synchronization code, enforced
at runtime

•  Mesa/Cedar from Xerox PARC
•  Java: synchronized, wait, notify, notifyall
•  C#: lock, wait (with timeouts) , pulse, pulseall
•  Python: acquire, release, wait, notify, notifyAll

Monitors easier & safer than semaphores
• Compiler can check
• Lock acquire and release are implicit and

cannot be forgotten

Language Support

65

class	BK:	
		def	__init__(self):	
		 	self.lock	=	Lock()	
		 	self.hungrykid	=	Condition(self.lock)	
		 	self.nBurgers=	0	
		

Monitors in Python

66

def	make_burger(self):	
		with	self.lock:	
						self.nBurgers	=	self.nBurgers	+	1	
		 	self.hungrykid.notify()	

signa
l()	➙

	noti
fy()	

broad
cast)

	➙	noti
fyAll

()	

def	kid_eat(self):	
			with	self.lock:	
						while	self.nBurgers	==	0:	
									self.hungrykid.wait()	
						self.nBurgers	=	self.nBurgers	-	1	

wait
•  releases lock when called

•  re-acquires lock when it returns

Monitors in “4410 Python” : __init__	

67

class	BK:	
		def	__init__(self):	
		 	self.lock	=	Lock()	
		 	self.hungrykid	=	Condition(self.lock)	
		 	self.nBurgers=	0	

from	rvr	import	MP,	MPthread	
	
class	BurgerKingMonitor(MP):	
		def	__init__(self):	
				MP.__init__(self,None)	
				self.lock	=	Lock(“monitor	lock”)	
				self.hungrykid	=	self.lock.Condition(“hungry	kid”)	
				self.nBurgers	=	self.Shared(“num	burgers”,	0)	

Python

4410 Python

Monitors in “4410 Python” : kid_eat	

68

def	kid_eat(self):	
			with	self.lock:	
						while	self.nBurgers	==	0:	
									self.hungrykid.wait()	
						self.nBurgers	=	self.nBurgers	-	1	

def	kid_eat(self):	
		with	self.lock:	
				while	(self.nBurgers.read()	==	0):	
						self.hugryKid.wait()	
				self.nBurgers.dec()	

Python

4410 Python

We do this for helpful feedback:
•  from auto-grader
•  from debugger

Look in the A2/doc
directory for details
and example code.

• Definition
•  Simple Monitor Example
•  Implementation
• Classic Sync. Problems with Monitors
- Bounded Buffer Producer-Consumer
- Readers/Writers Problems
- Barrier Synchronization

•  Semantics & Semaphore Comparisons
• Classic Mistakes with Monitors

69

Monitors & Condition Variables

Producer-Consumer

70

Monitor	Producer_Consumer	{	
		char	buf[SIZE];	
		int	n=0,	tail=0,	head=0;	
		condition	not_empty,	not_full;	

		produce(char	ch)	{	
				while(n	==	SIZE):	
							wait(not_full);	
				buf[head]	=	ch;	
				head	=	(head+1)%SIZE;	
				n++;	

					notify(not_empty);	
				}	

		char	consume()	{	
				while(n	==	0):	
							wait(not_empty);	
				ch	=	buf[tail];	
				tail	=	(tail+1)%SIZE;			
				n--;	
				notify(not_full);	
				return	ch;	

		}	
}	

What if no thread is waiting
when notify() called?

Then signal is a nop.
Very different from calling
V() on a semaphore –
semaphores remember
how many times V() was
called!

Readers and Writers

71

Monitor	ReadersNWriters	{	
			
	int	waitingWriters=0,	waitingReaders=0,	nReaders=0,	nWriters=0;	
	Condition	canRead,	canWrite;	
	
BeginWrite()	
		with	monitor.lock:	
				++waitingWriters	
				while	(nWriters	>0	or	nReaders	>0)	
						canWrite.wait();	
				--waitingWriters	
				nWriters	=	1;	
	
EndWrite()	
		with	monitor.lock:	
				nWriters	=	0	
				if	WaitingWriters	>	0	
						canWrite.signal();	
				else	if	waitingReaders	>	0	
						canRead.broadcast();	
}	

void	BeginRead()	
		with	monitor.lock:	
				++waitingReaders	
				while	(nWriters>0	or	waitingWriters>0)	
						canRead.wait();	
				--waitingReaders	
				++nReaders	
	
	
void	EndRead()	
		with	monitor.lock:	
				--nReaders;	
				if	(nReaders==0	and	waitingWriters>0)	
						canWrite.signal();	
	

A writer can enter if:
•  no other active writer
 &&
•  no active readers

When a writer finishes:
check for waiting writers
Y ➙ lets one enter
N ➙ let all readers enter

Understanding the Solution

72

A reader can enter if:
•  no active writer

 &&
•  no waiting writers

Last reader finishes:

• it lets 1 writer in
 (if any)

• If a writer is active or waiting, readers
queue up

• If a reader (or another writer) is active,
writers queue up

… gives preference to writers, which is
often what you want

Fair?

73

•  Important synchronization primitive in high-
performance parallel programs

•  nThreads threads divvy up work, run rounds of
computations separated by barriers.

•  could fork & wait but
–  thread startup costs
–  waste of a warm cache

	
Create	n	threads	&	a	barrier.	
	
Each	thread	does	round1()	
barrier.checkin()	
	
Each	thread	does	round2()	
barrier.checkin()	

Barrier Synchronization

74

What’s wrong with this?

Checkin with 1 condition variable

75

self.allCheckedIn	=	Condition(self.lock)	
	
def	checkin():	
		with	self.lock:	
				nArrived++	
				if	nArrived	<	nThreads:	
		 				while	nArrived	<	nThreads	and	nArrived	>	
0:	
	 	 					allCheckedIn.wait()	
	 		else:		
	 				allCheckedIn.broadcast()	
	 	 			nArrived	=	0	

• Definition
•  Simple Monitor Example
•  Implementation
• Classic Sync. Problems with Monitors
- Bounded Buffer Producer-Consumer
- Readers/Writers Problems
- Barrier Synchronization

•  Semantics & Semaphore Comparisons
• Classic Mistakes with Monitors

76

Monitors & Condition Variables

The condition variables we have defined
obey Brinch Hansen (or Mesa) semantics

•  signaled thread is moved to ready list, but
not guaranteed to run right away

Hoare proposes an alternative semantics

•  signaling thread is suspended and,
atomically, ownership of the lock is passed
to one of the waiting threads, whose
execution is immediately resumed

CV semantics: Hansen vs. Hoare

77

Kid and Cook Threads Revisited

78

kid_main()	{				
					
			play_w_legos()	
			BK.kid_eat()	
	bathe()		
	make_robots()	
	BK.kid_eat()	

			facetime_Karthik()	
			facetime_oma()	
			BK.kid_eat()		
}	

cook_main()	{	
		
		wake()	
		shower()	
		drive_to_work()	
		while(not_5pm)	
				BK.makeburger()	
		drive_to_home()	
		watch_got()	
		sleep()	
}	

Monitor	BurgerKing	{	
		Lock	mlock	
	
		int	numburgers	=	0	
		condition	hungrykid	
	
		kid_eat:	
			with	mlock:	
			while	(numburgers==0)	
				hungrykid.wait()	
			numburgers	-=	1	

			
		makeburger:	
			with	mlock:	
			++numburger	
			hungrykid.signal()	

}	

Ready

Hoare vs. Mesa semantics
•  What happens if there are lots of

kids?

Hoare Semantics: monitor lock
transferred directly from signaling thread to
woken up thread

+  clean semantics, easy to reason about
–  not desirable to force signaling thread to give

monitor lock immediately to woken up thread
–  confounds scheduling with synchronization,

penalizes threads

Mesa/Hansen Semantics: puts a woken
up thread on the monitor entry queue, but
does not immediately run that thread, or
transfer the monitor lock

Hoare vs. Mesa/Hansen Semantics

79

Which is Mesa/Hansen? Which is Hoare?

80 wikipedia.org

Hansen/Mesa
signal() and broadcast() are hints
•  adding them affects

performance, never safety

Shared state must be checked in
a loop (could have changed)
•  robust to spurious wakeups

Simple implementation
•  no special code for thread

scheduling or acquiring lock
Used in most systems

Sponsored by a Turing Award
(Butler Lampson)

Hoare
 Signaling is atomic with the
resumption of waiting thread
•  shared state cannot change

before waiting thread
resumed

  Shared state can be checked
using an if statement

  Easier to prove liveness

  Tricky to implement

  Used in most books

  Sponsored by a Turing Award
  (Tony Hoare)

What are the implications?

81

Access to monitor is controlled by a lock. To call wait or
signal, thread must be in monitor (= have lock).
Wait vs. P:

•  Semaphore P() blocks thread only if value < 1
•  wait always blocks & gives up the monitor lock

Signal vs. V: causes waiting thread to wake up
•  V() increments ➙ future threads don't wait on P()
•  No waiting thread ➙ signal = nop
•  Condition variables have no history!

Monitors easier than semaphores
•  Lock acquire/release are implicit, cannot be forgotten
•  Condition for which threads are waiting explicitly in code

Condition Variables vs. Semaphores

82

Condition variables force the actual conditions that a
thread is waiting for to be made explicit in the code

•  comparison preceding the “wait()” call concisely
specifies what the thread is waiting for

Condition variables themselves have no state à
monitor must explicitly keep the state that is
important for synchronization

•  This is a good thing!

Pros of Condition Variables

83

12 Commandments of Synchronization

84

1.  Thou shalt name your synchronization variables properly.

2.  Thou shalt not violate abstraction boundaries nor try to
change the semantics of synchronization primitives.

3.  Thou shalt use monitors and condition variables instead of
semaphores whenever possible.

4.  Thou shalt not mix semaphores and condition variables.

5.  Thou shalt not busy-wait.

6.  All shared state must be protected.

7.  Thou shalt grab the monitor lock upon entry to, and release
it upon exit from, a procedure.

12 Commandments of Synchronization

85

8.  Honor thy shared data with an invariant, which your code
may assume holds when a lock is successfully acquired and
your code must make true before the lock is released.

9.  Thou shalt cover thy naked waits.

10.  Thou shalt guard your wait predicates in a while loop. Thou
shalt never guard a wait statement with an if statement.

11.  Thou shalt not split predicates.

12.  Thou shalt help make the world a better place for the
creator’s mighty synchronization vision.

	while	not	some_predicate():	
					CV.wait()	

What’s wrong with this?
	random_fn1()	
	CV.wait()	
	random_fn2()	

#9: Cover Thy Naked Waits

86

How about this?
with	self.lock:		
			a=False		
			while	not	a:	
						self.cv.wait()		
						a=True	

What is wrong with this?
	if	not	some_predicate():	
					CV.wait()	

#10: Guard your wait in a while loop

87

with	lock: 	 	 	 	 	What is wrong with this?	
		while	not	condA:		
						condA_cv.wait()	
		while	not	condB:		
						condB_cv.wait()	

Better:
with	lock:	
		while	not	condA	or	not	condB:	
				if	not	condA:		
						condA_cv.wait()	
				if	not	condB:		
						condB_cv.wait()	

#11: Thou shalt not split predicates

88

• Use consistent structure
• Always hold lock when using a

condition variable
• Never spin in sleep()

A few more guidelines

89

Several ways to handle them
•  each has its own pros and cons

Programming language support simplifies writing
multithreaded applications

•  Python condition variables
•  Java and C# support at most one condition variable

per object, so are slightly more limited

Some program analysis tools automate checking
•  make sure code is using synchronization correctly
•  hard part is defining “correct”

Conclusion: Race Conditions are a big pain!

90

deal

1.  Foundations, slides 1-26
•  Activity: too much milk

2.  Semaphores, slides 27-42, 48-51
•  Activity: Producer-Consumer w/Semaphores

3. Monitors & Condition Variables, 52-69
•  Activity: before monitors, do Rdrs/Writer (43-47

that you left out before), Producer Consumer
M&CVs

4. CV Semantics, vs. Semaphores, 76-83
•  Activity: Readers/Writer with M&CVs (70-72)

5. CV mistakes & rules,
•  Barrier Synchronization (73-75), Maybe

barbershop?

Lecture Schedule

91

self.allCheckedIn	=	Condition(self.lock)	
self.allLeaving	=	Condition(self.lock)	
	
def	checkin():	
	nArrived++	

			if	nArrived	<	nThreads:							//	not	everyone	has	checked	in	
			while	nArrived	<	nThreads:	
		 	allCheckedIn.wait()											//	wait	for	everyone	to	check	in	

			else:	
					nLeaving	=	0															//	this	thread	is	the	last	to	arrive	
				allCheckedIn.broadcast()			//	tell	everyone	we’re	all	here!	

	
	nLeaving++	
	if	nLeaving	<	nThreads:													//	not	everyone	has	left	yet	
		while	nLeaving	<	nThreads:	
		 	allLeaving.wait()														//	wait	for	everyone	to	leave	

			else:	
					nArrived	=	0															//	this	thread	is	the	last	to	leave	
					allLeaving.broadcast()					//	tell	everyone	we’re	outta	here!	

 Implementing barriers is not easy.
 Solution here uses a “double-turnstile”

Checkin with 2 condition variables

92

