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• Foundations 
• Semaphores 
• Monitors & Condition 

Variables 



•  Race Conditions 
•  Critical Sections 
•  Example: Too Much Milk 
•  Basic Hardware Primitives  
•  Building a SpinLock 
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Synchronization Foundations 



Process:  
• Privilege Level 
• Address Space 
• Code, Data, Heap 
• Shared I/O resources 
• One or more Threads: 

•  Stack 
•  Registers 
•  PC, SP 

Recall: Process vs. Thread 
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Shared 
amongst 
threads 



2 threads updating a shared variable amount	
•  One thread wants to decrement amount by $10K 
•  Other thread wants to decrement amount by 50% 

 
What happens when both threads are running? 

Two Theads, One Variable 
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  Memory 

. . . 
amount	-=	10,000;	
. . . 

. . . 
amount	*=	0.5;	
. . . 

100,000 amount 

T1	 T2	



Might execute like this: 
Two Theads, One Variable 
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  Memory 

.	.	.	
r1	=	load	from	amount	
r1	=	r1	–	10,000	
store	r1	to	amount	
.	.	.	

.	.	.	
r2	=	load	from	amount	
r2	=	0.5	*	r2	
store	r2	to	amount	
.	.	.	

40,000 amount 

Or vice versa (T1 then T2 à 45,000)… 
   either way is fine… 

T1	

T2	



Or it might execute like this: 
Two Theads, One Variable 
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  Memory 

.	.	.	
r1	=	load	from	amount	
r1	=	r1	–	10,000	
store	r1	to	amount	
.	.	.	

.	.	.	
r2	=	load	from	amount	
	
.	.	.	
	
r2	=	0.5	*	r2	
store	r2	to	amount	
.	.	.	

50,000 amount 

Lost Update! 
Wrong ..and very difficult to debug 

T1	

T2	



= timing dependent error involving shared state  
•  Once thread A starts, it needs to “race” to finish 
•  Whether race condition happens depends on 
thread schedule 

•   Different “schedules” or “interleavings” exist 
    (total order on machine instructions) 

 
All possible interleavings should 

be safe! 

Race Conditions 
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1.  Program execution depends on the possible 
interleavings of threads’ access to shared 
state. 

2.  Program execution can be nondeterministic. 

3.  Compilers and processor hardware can 
reorder instructions. 

 

Problems with Sequential Reasoning 
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•  Number of possible interleavings is huge 
•  Some interleavings are good 
•  Some interleavings are bad: 

•    But bad interleavings may rarely happen! 
•    Works 100x ≠ no race condition 

•  Timing dependent: small changes hide bugs 

(recall: Therac-25) 

Race Conditions are Hard to Debug 
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• 2 concurrent enqueue() operations? 
• 2 concurrent dequeue() operations? 

What could possibly go wrong? 

Example: Races with Queues 
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tail	 head	



Must be atomic due to shared memory access 

 
Goals 
Safety: 1 thread in a critical section at time 
Liveness: all threads make it into the CS if desired 
Fairness: equal chances of getting into CS 
       … in practice, fairness rarely guaranteed 

Critical Section 
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.	.	.	
CSEnter();	
		Critical	section	
CSExit();	
.	.	.	

.	.	.	
CSEnter();	
		Critical	section	
CSExit();	
.	.	.	

T1	 T2	
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Too Much Milk: 
Safety, Liveness, and Fairness 

with no hardware support 



2 roommates, fridge always stocked with milk 
•  fridge is empty → need to restock it 
•  don’t want to buy too much milk 

Caveats 
•  Only communicate by a notepad on the fridge 
•  Notepad has cells with names, like variables: 
                             out_to_buy_milk     

TASK: Write the pseudo-code to ensure that at 
most one roommate goes to buy milk 

Too Much Milk Problem 
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0	



Solution #1: No Protection 
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if	fridge_empty():	
	buy_milk()	

	
if	fridge_empty():	
	buy_milk()	

T1	 T2	

 
Safety:      Only one person (at most) buys milk 
Liveness:  If milk is needed, someone 
eventually buys it. 
Fairness:   Roommates equally likely to go to 
buy milk. 
 
Safe?    Live?    Fair? 



Solution #2: add a boolean flag 
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while(outtobuymilk):	
			do_nothing();	
if	fridge_empty():	
			outtobuymilk	=	1	
			buy_milk()	
	outtobuymilk	=	0	

	
while(outtobuymilk):		
	do_nothing();	

if	fridge_empty():	
	outtobuymilk	=	1	
	buy_milk()	
	outtobuymilk	=	0	

T1	 T2	

 
Safety:      Only one person (at most) buys milk 
Liveness:  If milk is needed, someone eventually buys it. 
Fairness:   Roommates equally likely to go to buy milk. 
Safe?    Live?    Fair? 

outtobuymilk initially false 



Solution #3: add two boolean flags! 
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blues_got_this	=	1	
if	!reds_got_this	and	
					fridge_empty():	
	buy_milk()	

blues_got_this	=	0	

	
reds_got_this	=	1	
if	!blues_got_this	and			
			fridge_empty():	
	buy_milk()	

reds_got_this	=	0	

T1	 T2	

one for each roommate (initially false): 
    blues_got_this,	reds_got_this	

 
Safety:      Only one person (at most) buys milk 
Liveness:  If milk is needed, someone eventually buys it. 
Fairness:   Roommates equally likely to go to buy milk. 
Safe?    Live?    Fair? 



Solution #4: asymmetric flags! 
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blues_got_this	=	1	
while	reds_got_this:	
				do_nothing()	
if	fridge_empty():	
	buy_milk()	

blues_got_this	=	0	

	
reds_got_this	=	1	
if	not	blues_got_this:		
	if	fridge_empty():	
			buy_milk()	

reds_got_this	=	0	
	

T1	 T2	

‒ complicated (and this is a simple example!) 
‒ hard to ascertain that it is correct 
‒ asymmetric code is hard to generalize & unfair 

Safe?    Live?    Fair? 

one for each roommate (initially false): 
    blues_got_this,	reds_got_this	



Last Solution: Peterson’s Solution 
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blues_got_this	=	1	
turn	=	red	
while	(reds_got_this		
	and	turn==red):	

				do_nothing()	
if	fridge_empty():	
	buy_milk()	

blues_got_this	=	0	

	

reds_got_this	=	1	
turn	=	blue	
while	(blues_got_this		
	and	turn==blue):	

				do_nothing()	
if	fridge_empty():	
	buy_milk()	

reds_got_this	=	0	

T1	 T2	

another flag turn	{blue,	red}	

‒ complicated (and this is a simple example!) 
‒ hard to ascertain that it is correct 
‒ hard to generalize 

Safe?    Live?    Fair? 



•  HW primitives to provide mutual exclusion 
•  A machine instruction (part of the ISA!) that: 

•  Reads & updates a memory location 
•  Is atomic (other cores can’t see intermediate state) 

•  Example: Test-And-Set 
 1 instruction with the following semantics: 

 
  

 
sets the value to 1, returns former value 

Hardware Solution 
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ATOMIC	int	TestAndSet(int	*var)	{	
	int	oldVal	=	*var;	
	*var	=	1;	
	return	oldVal;	

}	



Shared variable: int	buyingmilk, initially 
0 

Buying Milk with TAS 
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while(TAS(&buyingmilk))	
					do_nothing();	
	if	fridge_empty():	
	buy_milk()	

buyingmilk	:=	0	

	
while(TAS(&buyingmilk))	
					do_nothing();	
	if	fridge_empty():	
	buy_milk()	

buyingmilk	:=	0	

T1	 T2	

A little hard on the eyes. Can we do better? 



Enter: Locks! 
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acquire(int	*lock)	{	
			while(test_and_set(lock))	
			/*	do	nothing	*/;	

}	

release(int	*lock)	{	
	*lock	=	0;	
}	



Shared lock: int	buyingmilk, initially 0 
Buying Milk with Locks 
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acquire(&buyingmilk);	
	if	fridge_empty():	
	buy_milk()	

release(&buyingmilk);	

	
acquire(&buyingmilk);	
	if	fridge_empty():	
	buy_milk()	

release(&buyingmilk);	

T1	 T2	

Now we’re getting somewhere! 
Is anyone not happy with this? 



Thou 
shalt not 
busy-wait! 
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Participants not in critical section must spin           
               → wasting CPU cycles 
•  Replace the “do nothing” loop with a “yield()”? 
•  Threads would still be scheduled and descheduled 

(context switches are expensive) 

Need a better primitive: 
• allows one thread to pass through 
• all others sleep until they can execute again 

Not just any locks: SpinLocks 
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• Foundations 
• Semaphores 
• Monitors & Condition 

Variables 



•  Definition 
•  Binary Semaphores 
•  Counting Semaphores 
•  Classic Sync. Problems (w/Semaphores) 
- Producer-Consumer (w/ a bounded buffer)  
- Readers/Writers Problem 

•  Classic Mistakes with Semaphores 
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Semaphores 



Dijkstra introduced in the THE Operating System 

Stateful: 
•  a value (incremented/decremented atomically) 
•  a queue 
•  a lock 

Interface: 
•  Init(starting value) 
•  P (procure): decrement, “consume” or “start using” 
•  V (vacate): increment, “produce” or “stop using” 

No operation to read the value! 

What is a Semaphore? 
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[Dijkstra 1962] 

Dutch 4410: P = Probeer (‘Try'), V = Verhoog ('Increment', 'Increase by one') 



Semantics of P and V 
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P()	{	
				while(n	<=	0)		
							;	
				n	-=	1;	
}	

V()	{	
				n	+=	1;	
}	

P(): 
•  wait until value >0	
•  when so, decrement 

VALUE by 1 
 

V(): 
•  increment VALUE by 1 
 

These are the semantics,  
but how can we make this efficient? 
(doesn’t this look like a spinlock?!?) 



Implementation of P and V 
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P()	{	
				while(n	<=	0)		
							;	
				n	-=	1;	
}	

V()	{	
				n	+=	1;	
}	

P(): 
• block (sit on Q) til n >	0 
• when so, decrement VALUE 

by 1 
 

V(): 
•  increment VALUE by 1 
•  resume a thread waiting on 

Q (if any) 

Okay this looks efficient, but how is this safe? 
(that’s what the lock is for – both P&V need to TAS the lock) 



Semaphore value is either 0 or 1 
•   Used for mutual exclusion  

(semaphore as a more efficient lock) 
•   Initially 1 in that case 

Binary Semaphore 
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S.P()	
CriticalSection()	
S.V()	

	
S.P()	
CriticalSection()	
S.V()	

T1	 T2	

Semaphore	S	
S.init(1)	



Example: A simple mutex 

S.P()	
CriticalSection()	
S.V()	

Semaphore	S	
S.init(1)	

P()	{	
				while(n	<=	0)		
							;	
				n	-=	1;	
}	

V()	{	
				n	+=	1;	
}	

32 



Sema count can be any integer 
•   Used for signaling or counting resources 
•   Typically:  

•  one thread performs P() to await an event 
• another thread performs V() to alert waiting 

thread that event has occurred  

Counting Semaphores 
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pkt	=	get_packet()	
enqueue(packetq,	pkt);	
packetarrived.V();	

packetarrived.P();	
pkt	=	dequeue(packetq);	
print(pkt);	

T1	 T2	

Semaphore	packetarrived	
packetarrived.init(0)	

PrintingThread:	ReceivingThread:	



• must be initialized!  
• keeps state 
•  reflects the sequence of past operations 
•  >0 reflects number of future P operations 

that will succeed 

Not possible to: 
•  read the count 
• grab multiple semaphores at same 

time 
• decrement/increment by more than 1! 

Semaphore’s count: 
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2+ threads communicate:  
some threads produce data that others consume   
 
 
 

Bounded buffer: size         —N entries—  

Producer process writes data to buffer 
•  Writes to in and moves rightwards 

Consumer process reads data from buffer 
•  Reads from out and moves rightwards 

Producer-Consumer Problem 
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0 N-1	

in	 out	



•  Pre-processor produces source file for 
compiler’s parser 

•  Data from bar-code reader consumed by 
device driver 

•  File data: computer à printer spooler à line 
printer device driver 

•  Web server produces data consumed by 
client’s web browser 

•  “pipe”  ( | ) in Unix    >cat	file	|	sort	|	more	

Producer-Consumer Applications 
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Starter Code: No Protection 
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//	add	item	to	buffer	
void	produce(int	item)	{	
		buf[in]	=	item;	
		in	=	(in+1)%N;	
}	

	

//	remove	item	
int	consume()	{	
		int	item	=	buf[out];	
		out	=	(out+1)%N;	
		return	item;	
}	

Problems: 
1.  Unprotected shared state (multiple producers/consumers) 
2.  Inventory:  

•  Consumer could consume when nothing is there! 
•  Producer could overwrite not-yet-consumed data! 

Shared:	
int	buf[N];	
int	in,	out;	



Part 1: Guard Shared Resources 
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//	add	item	to	buffer	
void	produce(int	item)	
{	
		mutex_in.P();	
		buf[in]	=	item;	
		in	=	(in+1)%N;			
		mutex_in.V();	

	
}	

//	remove	item	
int	consume()		
{	
		mutex_out.P();	
		int	item	=	buf[out];	
		out	=	(out+1)%N;	
		mutex_out.V();	
		return	item;	
}	

Shared:	
int	buf[N];	
int	in	=	0,	out	=	0;	
Semaphore	mutex_in(1),	mutex_out(1);	

now atomic 



Part 2: Manage the Inventory 
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void	produce(int	item)	
{	
			empty.P();	//need space 
   mutex_in.P();	
			buf[in]	=	item;	
			in	=	(in+1)%N;	
	 	mutex_in.V();	
	filled.V();	//new item! 

}	

int	consume()		
{	
			filled.P();	//need item		
			mutex_out.P();	
			int	item	=	buf[out];	
			out	=	(out+1)%N;	
			mutex_out.V();	
	empty.V();	//more space! 

			return	item;	
}	

Shared:	
int	buf[N];	
int	in	=	0,	out	=	0;	
Semaphore	mutex_in(1),	mutex_out(1);	
Semaphore	empty(N),	filled(0);	



Sanity checks 
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void	produce(int	item)	
{	
			empty.P();	//need space 
   mutex_in.P();	
			buf[in]	=	item;	
			in	=	(in+1)%N;	
	 	mutex_in.V();	
	filled.V();	//new item! 

}	

int	consume()		
{	
			filled.P();	//need item		
			mutex_out.P();	
			int	item	=	buf[out];	
			out	=	(out+1)%N;	
			mutex_out.V();	
	empty.V();	//more space! 

			return	item;	
}	

Shared:	
int	buf[N];	
int	in	=	0,	out	=	0;	
Semaphore	mutex_in(1),	mutex_out(1);	
Semaphore	empty(N),	filled(0);	

1.  Is there a V for every P? 
2. Mutex initialized to 1? 
3. Mutex P&V in same thread? 



Pros: 
•  Live & Safe (& Fair) 
•  No Busy Waiting! (is this true?) 
•  Scales nicely 
 

Cons: 
•  Still seems complicated: is it correct?  
•  Not so readable 
•  Easy to introduce bugs 

Producer-consumer: How did we do? 

41 



Invariant 
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void	produce(int	item)	
{	
			empty.P();	//need space 
   mutex_in.P();	
			buf[in%N]	=	item;	
			in	+=	1;	
	 	mutex_in.V();	
	filled.V();	//new item! 

}	

int	consume()		
{	
			filled.P();	//need item		
			mutex_out.P();	
			int	item	=	buf[out%N];	
			out	+=	1;	
			mutex_out.V();	
	empty.V();	//more space! 

			return	item;	
}	

Shared:	
int	buf[N];	
int	in	=	0,	out	=	0;	
Semaphore	mutex_in(1),	mutex_out(1);	
Semaphore	empty(N),	filled(0);	

0 ≤ in – out ≤ N  



Models access to a database: shared data that 
some threads read and other threads write 
At any time, want to allow: 
•  multiple concurrent readers        —OR—(exclusive) 
•  only a single writer 
 
Example: making an airline reservation 
•  Browse flights: web site acts as a reader 
•  Reserve a seat: web site has to write into 

database      (to make the reservation) 

Readers-Writers Problem 
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[Courtois+ 1971] 



N threads share 1 object in memory 
•   Some write: 1 writer active at a time 
•   Some read: n readers active simultaneously 

Insight: generalizes the critical section concept 

Implementation Questions: 
1.  Writer is active. Combo of readers/writers arrive.            

 Who should get in next?  
2. Writer is waiting. Endless of # of readers come.                    

 Fair for them to become active? 

For now: back-and-forth turn-taking:  
•   If a reader is waiting, readers get in next   
•   If a writer is waiting, one writer gets in next 

Readers-Writers Specifications 

44 



Readers-Writers Solution 
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void	write()		 												
			rw_lock.P();	

				.	.	.	
				/*	perform	write	*/	

	.	.	. 		
	rw_lock.V();	

}	

int	read()		
{	
				count_mutex.P();	
				rcount++;	
				if	(rcount	==	1)	
	 						rw_lock.P();	
				count_mutex.V();	
				.	.	.	
				/*	perform	read	*/	
				.	.	.	
				count_mutex.P();	
				rcount--;	
				if	(rcount	==	0)	
	 						rw_lock.V();	
	 		count_mutex.V();	
}	

Shared:	
int	rcount	=	0;	
Semaphore	count_mutex(1);		
Semaphore	rw_lock(1);	



If there is a writer: 
•   First reader blocks on rw_lock	
•   Other readers block on mutex	

Once a reader is active, all readers get to go through 
•   Which reader gets in first? 

The last reader to exit signals a writer 
•   If no writer, then readers can continue 

If readers and writers waiting on rw_lock & writer exits 
•   Who gets to go in first? 

Readers-Writers: Understanding the Solution 
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When readers active no writer can enter   ✔ ︎ 
•  Writers wait @ rw_lock.P() 

When writer is active nobody can enter   ✔ ︎
•  Any other reader or writer will wait (where?) 

Back-and-forth isn’t so fair:                            
•  Any number of readers can enter in a row 
•  Readers can “starve” writers 

Fair back-and-forth semaphore solution is tricky! 
•  Try it! (don’t spend too much time…) 

Readers-Writers: Assessing the Solution 

47 



•  Definition 
•  Binary Semaphores 
•  Counting Semaphores 
•  Classic Sync. Problems (w/Semaphores) 
- Producer-Consumer (w/ a bounded buffer)  
- Readers/Writers Problem 

•  Classic Mistakes with Semaphores 
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Semaphores 



Classic Semaphore Mistakes 
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P(S)	
CS	
P(S)	

I	

V(S)	
CS	
V(S)	

P(S)	
CS	

J	

K	

P(S)	
if(x)	return;	
CS	
V(S)	

L	

	I	stuck	on	2nd	P().	Subsequent	
processes	freeze	up	on	1st	P().	

Undermines	mutex:		
• 	J	doesn’t	get	permission	via	P()		
• 	“extra”	V()s	allow	other	processes	
into	the	CS	inappropriately	

Next	call	to	P()	will	freeze	up.	
Confusing	because	the	other	process	
could	be	correct	but	hangs	when	you	
use	a	debugger	to	look	at	its	state!	

Conditional	code	can	change	code	
flow	in	the	CS.	Caused	by	code	

updates	(bug	fixes,	etc.)	by	someone	
other	than	original	author	of	code.	

⬅︎typo  

⬅︎typo  

⬅︎omission 



“During system conception … we used the 
semaphores in two completely different ways. 
The difference is so marked that, looking back, 
one wonders whether it was really fair to 
present the two ways as uses of the very same 
primitives. On the one hand, we have the 
semaphores used for mutual exclusion, on the 
other hand, the private semaphores.”  

— Dijkstra “The structure of the ’THE’-
Multiprogramming System” Communications of the 
ACM v. 11 n. 5 May 1968. 

Semaphores Considered Harmful 
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These are “low-level” primitives. Small errors: 
•   Easily bring system to grinding halt 
•   Very difficult to debug 

Two usage models: 
•  Mutual exclusion: “real” abstraction is a critical 

section 
•  Communication: threads use semaphores to 

communicate (e.g., bounded buffer example) 
Simplification: Provide concurrency support in 
compiler 
à Enter Monitors 

Semaphores NOT to the rescue! 
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52 

 
• Foundations 
• Semaphores 
• Monitors & 

Condition Variables 



Producer-Consumer 
with locks 
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char	buf[SIZE];	
int	n=0,	tail=0,	head=0;	
lock	l;	

produce(char	ch)	{	
		l.acquire()	
			while(n	==	SIZE):	
					l.release();	l.acquire()	
		buf[head]	=	ch;	
		head	=	(head+1)%SIZE;	
		n++;	

			l.release();	
}	

char	consume()	{	
		l.acquire()	
		while(n	==	0):	
					l.release();	l.acquire()	
		ch	=	buf[tail];	
		tail	=	(tail+1)%SIZE;			
		n--;	
		l.release;	
		return	ch;	

}	



Thou 
shalt not 
busy-wait! 

54 



Multiple	Processors		 Hardware	Interrupts	
HARDWARE 

Interrupt	Disable	 Atomic	R/W	Instructions	
ATOMIC INSTRUCTIONS 

SYNCHRONIZATION OBJECTS 

CONCURRENT APPLICATIONS 
. . .  

Semaphores	Locks	 Condition	Variables	 Monitors	
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• Definition 
•  Simple Monitor Example 
•  Implementation 
• Classic Sync. Problems with Monitors 
- Bounded Buffer Producer-Consumer 
- Readers/Writers Problems 
- Barrier Synchronization 

•  Semantics & Semaphore Comparisons 
• Classic Mistakes with Monitors 
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Monitors  & Condition Variables 



Only one thread can execute monitor procedure at any time 
(aka “in the monitor”) 

Monitor Semantics guarantee mutual exclusion 
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Monitor	monitor_name	
{	
			// shared variable declarations 
					
			procedure	P1()	{	
			}	
	
			procedure	P2()	{	
			}	
			.	
			.	
			procedure	PN()	{	
			}	
	
			initialization_code()	{	
			}	
}	

Monitor	bounded_buffer	
{	
	int	in=0,	out=0,	nElem=0;	
	int	buffer[N];	

					
			consume()	{	
			}	
	
			produce()	{	
			}	
	
}	

in the abstract: 

for example: 

only one operation 

 can execute at a time 

can only access shared 
data via a monitor 

procedure 



Producer-Consumer Revisited 
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Problems: 
1.  Unprotected shared state (multiple producers/consumers) 

2.  Inventory:  
•  Consumer could consume when nothing is there! 
•  Producer could overwrite not-yet-consumed data! 

Solved via Monitor. 
Only 1 thread allowed in at a time. 

•  Only one thread can execute monitor procedure at any time 
•  If second thread invokes monitor procedure at that time, it will 

block and wait for entry to the monitor. 
•  If thread within a monitor blocks, another can enter 

 

What about these? 
à Enter Condition Variables 



A mechanism to wait for events 
 
3 operations on Condition	Variable	x	
•  x.wait(): sleep until woken up (could wake 

up on your own) 
•  x.signal(): wake at least one process 

waiting on condition (if there is one). No 
history associated with signal. 

•  x.broadcast(): wake all processes waiting on 
condition 

Condition Variables 

59 !! NOT the same thing as UNIX wait & signal !! 



You must hold the monitor lock to call these 
operations. 

 To wait for some condition: 
	while	not	some_predicate():	
	 	CV.wait()	

•  atomically releases monitor lock & yields processor 
•  as CV.wait() returns, lock automatically reacquired 

  
When the condition becomes satisfied: 

 CV.broadcast():	wakes up all threads 
 CV.signal():	wakes up at least one thread 

Using Condition Variables 
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Condition Variables Live in the Monitor 
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1. Shared Private Data 
•  the resource 
•  can only be accessed from in the monitor 

2. Procedures operating on data 
•  gateway to the resource 
•  can only act on data local to the monitor 

3. Synchronization primitives 
•  among threads that access the procedures 

[Hoare 1974] 

Abstract Data Type for handling 
shared resources, comprising: 



Types of Wait Queues 
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Monitors have two kinds of “wait” queues 
• Entry to the monitor: a queue of 

threads waiting to obtain mutual exclusion & 
enter 

• Condition variables: each condition 
variable has a queue of threads waiting on 
the associated condition 



Kid and Cook Threads  
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kid_main()	{				
					
			play_w_legos()	
			BK.kid_eat()	
	bathe()		
	make_robots()	
	BK.kid_eat()	

			facetime_Karthik()	
			facetime_oma()	
			BK.kid_eat()		
}	

cook_main()	{	
		
		wake()	
		shower()	
		drive_to_work()	
		while(not_5pm)	
				BK.makeburger()	
		drive_to_home()	
		watch_got()	
		sleep()	
}	

Monitor	BurgerKing	{	
		Lock	mlock	
	
		int	numburgers	=	0	
		condition	hungrykid	
	
		kid_eat:	
			with	mlock:	
			while	(numburgers==0)	
						hungrykid.wait()	
			numburgers	-=	1	

			
		makeburger:	
			with	mlock:	
			++numburger	
			hungrykid.signal()	

}	

Ready Running 
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Can be embedded in programming language:  
•  Compiler adds synchronization code, enforced 
at runtime 

•  Mesa/Cedar from Xerox PARC 
•  Java: synchronized, wait, notify, notifyall 
•  C#: lock, wait (with timeouts) , pulse, pulseall 
•  Python: acquire, release, wait, notify, notifyAll 

Monitors easier & safer than semaphores 
• Compiler can check 
• Lock acquire and release are implicit and 

cannot be forgotten 

Language Support 
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class	BK:	
		def	__init__(self):	
		 	self.lock	=	Lock()	
		 	self.hungrykid	=	Condition(self.lock)	
		 	self.nBurgers=	0	
		

Monitors in Python 

66 

def	make_burger(self):	
		with	self.lock:	
						self.nBurgers	=	self.nBurgers	+	1	
		 	self.hungrykid.notify()	

signa
l()	➙

	noti
fy()	

broad
cast)

	➙	noti
fyAll

()	

def	kid_eat(self):	
			with	self.lock:	
						while	self.nBurgers	==	0:	
									self.hungrykid.wait()	
						self.nBurgers	=	self.nBurgers	-	1	

wait  
•  releases lock when called 

•  re-acquires lock when it returns 



Monitors in “4410 Python” : __init__	
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class	BK:	
		def	__init__(self):	
		 	self.lock	=	Lock()	
		 	self.hungrykid	=	Condition(self.lock)	
		 	self.nBurgers=	0	

from	rvr	import	MP,	MPthread	
	
class	BurgerKingMonitor(MP):	
		def	__init__(self):	
				MP.__init__(self,None)	
				self.lock	=	Lock(“monitor	lock”)	
				self.hungrykid	=	self.lock.Condition(“hungry	kid”)	
				self.nBurgers	=	self.Shared(“num	burgers”,	0)	

Python 

4410 Python 



Monitors in “4410 Python” : kid_eat	
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def	kid_eat(self):	
			with	self.lock:	
						while	self.nBurgers	==	0:	
									self.hungrykid.wait()	
						self.nBurgers	=	self.nBurgers	-	1	

def	kid_eat(self):	
		with	self.lock:	
				while	(self.nBurgers.read()	==	0):	
						self.hugryKid.wait()	
				self.nBurgers.dec()	

Python 

4410 Python 

We do this for helpful feedback: 
•  from auto-grader  
•  from debugger 

Look in the A2/doc 
directory for details 
and example code. 
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Producer-Consumer 
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Monitor	Producer_Consumer	{	
		char	buf[SIZE];	
		int	n=0,	tail=0,	head=0;	
		condition	not_empty,	not_full;	

		produce(char	ch)	{	
				while(n	==	SIZE):	
							wait(not_full);	
				buf[head]	=	ch;	
				head	=	(head+1)%SIZE;	
				n++;	

					notify(not_empty);	
				}	

		char	consume()	{	
				while(n	==	0):	
							wait(not_empty);	
				ch	=	buf[tail];	
				tail	=	(tail+1)%SIZE;			
				n--;	
				notify(not_full);	
				return	ch;	

		}	
}	

What if no thread is waiting 
when notify() called? 

Then signal is a nop.   
Very different from calling 
V() on a semaphore – 
semaphores remember 
how many times V() was 
called! 



Readers and Writers 
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Monitor	ReadersNWriters	{	
			
	int	waitingWriters=0,	waitingReaders=0,	nReaders=0,	nWriters=0;	
	Condition	canRead,	canWrite;	
	
BeginWrite()	
		with	monitor.lock:	
				++waitingWriters	
				while	(nWriters	>0	or	nReaders	>0)	
						canWrite.wait();	
				--waitingWriters	
				nWriters	=	1;	
	
EndWrite()	
		with	monitor.lock:	
				nWriters	=	0	
				if	WaitingWriters	>	0	
						canWrite.signal();	
				else	if	waitingReaders	>	0	
						canRead.broadcast();	
}	

void	BeginRead()	
		with	monitor.lock:	
				++waitingReaders	
				while	(nWriters>0	or	waitingWriters>0)	
						canRead.wait();	
				--waitingReaders	
				++nReaders	
	
	
void	EndRead()	
		with	monitor.lock:	
				--nReaders;	
				if	(nReaders==0	and	waitingWriters>0)	
						canWrite.signal();	
	



A writer can enter if: 
•  no other active writer 
               && 
•   no active readers 

When a writer finishes: 
check for waiting writers 
Y ➙ lets one enter 
N ➙ let all readers enter 

Understanding the Solution 

72 

A reader can enter if: 
•  no active writer  

          &&  
•  no waiting writers 

 
 
Last reader finishes:  

• it lets 1 writer in      
     (if any) 



• If a writer is active or waiting, readers 
queue up 

• If a reader (or another writer) is active, 
writers queue up 

… gives preference to writers, which is 
often what you want 

Fair? 
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•  Important synchronization primitive in high-
performance parallel programs 

•  nThreads threads divvy up work, run rounds of 
computations separated by barriers. 

•  could fork & wait but  
–  thread startup costs 
–  waste of a warm cache 

	
Create	n	threads	&	a	barrier.	
	
Each	thread	does	round1()	
barrier.checkin()	
	
Each	thread	does	round2()	
barrier.checkin()	

Barrier Synchronization 
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What’s wrong with this? 

Checkin with 1 condition variable 
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self.allCheckedIn	=	Condition(self.lock)	
	
def	checkin():	
		with	self.lock:	
				nArrived++	
				if	nArrived	<	nThreads:	
		 				while	nArrived	<	nThreads	and	nArrived	>	
0:	
	 	 					allCheckedIn.wait()	
	 		else:		
	 				allCheckedIn.broadcast()	
	 	 			nArrived	=	0	
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The condition variables we have defined 
obey Brinch Hansen (or Mesa) semantics 

•  signaled thread is moved to ready list, but 
not guaranteed to run right away 

 
Hoare proposes an alternative semantics 

•  signaling thread is suspended and, 
atomically, ownership of the lock is passed 
to one of the waiting threads, whose 
execution is immediately resumed 

CV semantics: Hansen vs. Hoare 
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Kid and Cook Threads Revisited 
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kid_main()	{				
					
			play_w_legos()	
			BK.kid_eat()	
	bathe()		
	make_robots()	
	BK.kid_eat()	

			facetime_Karthik()	
			facetime_oma()	
			BK.kid_eat()		
}	

cook_main()	{	
		
		wake()	
		shower()	
		drive_to_work()	
		while(not_5pm)	
				BK.makeburger()	
		drive_to_home()	
		watch_got()	
		sleep()	
}	

Monitor	BurgerKing	{	
		Lock	mlock	
	
		int	numburgers	=	0	
		condition	hungrykid	
	
		kid_eat:	
			with	mlock:	
			while	(numburgers==0)	
				hungrykid.wait()	
			numburgers	-=	1	

			
		makeburger:	
			with	mlock:	
			++numburger	
			hungrykid.signal()	

}	

Ready 

Hoare vs. Mesa semantics 
•  What happens if there are lots of 

kids? 



Hoare Semantics: monitor lock 
transferred directly from signaling thread to 
woken up thread 

+  clean semantics, easy to reason about 
–  not desirable to force signaling thread to give 

monitor lock immediately to woken up thread 
–  confounds scheduling with synchronization,    

penalizes threads 

Mesa/Hansen Semantics: puts a woken 
up thread on the monitor entry queue, but 
does not immediately run that thread, or 
transfer the monitor lock 

Hoare vs. Mesa/Hansen Semantics 
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Which is Mesa/Hansen? Which is Hoare? 
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Hansen/Mesa 
signal() and broadcast() are hints 
•  adding them affects 

performance, never safety 

Shared state must be checked in 
a loop (could have changed) 
•  robust to spurious wakeups 

Simple implementation  
•  no special code for thread 

scheduling or acquiring lock 
Used in most systems 

Sponsored by a Turing Award 
(Butler Lampson) 

Hoare 
 Signaling is atomic with the 
resumption of waiting thread 
•  shared state cannot change 

before waiting thread 
resumed 

  Shared state can be checked 
using an if statement 

  Easier to prove liveness 

  Tricky  to implement 

  Used in most books 

  Sponsored by a Turing Award 
  (Tony Hoare) 

What are the implications? 
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Access to monitor is controlled by a lock. To call wait or 
signal, thread must be in monitor (= have lock). 
Wait vs. P: 

•   Semaphore P() blocks thread only if value < 1 
•   wait always blocks & gives up the monitor lock 

Signal vs. V: causes waiting thread to wake up 
•   V() increments ➙ future threads don't wait on P() 
•   No waiting thread  ➙  signal = nop 
•  Condition variables have no history! 

Monitors easier than semaphores 
•   Lock acquire/release are implicit, cannot be forgotten 
•   Condition for which threads are waiting explicitly in code 

Condition Variables vs. Semaphores 
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Condition variables force the actual conditions that a 
thread is waiting for to be made explicit in the code 

•  comparison preceding the “wait()” call concisely 
specifies what the thread is waiting for 

Condition variables themselves have no state à 
monitor  must explicitly keep the state that is 
important for synchronization 

•  This is a good thing! 

Pros of Condition Variables 
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12 Commandments of Synchronization 
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1.  Thou shalt name your synchronization variables properly.  

2.  Thou shalt not violate abstraction boundaries nor try to 
change the semantics of synchronization primitives. 

3.  Thou shalt use monitors and condition variables instead of 
semaphores whenever possible. 

4.  Thou shalt not mix semaphores and condition variables. 

5.  Thou shalt not busy-wait. 

6.  All shared state must be protected. 

7.  Thou shalt grab the monitor lock upon entry to, and release 
it upon exit from, a procedure. 



12 Commandments of Synchronization 
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8.  Honor thy shared data with an invariant, which your code 
may assume holds when a lock is successfully acquired and 
your code must make true before the lock is released. 

9.  Thou shalt cover thy naked waits. 

10.  Thou shalt guard your wait predicates in a while loop. Thou 
shalt never guard a wait statement with an if statement. 

11.  Thou shalt not split predicates. 

12.  Thou shalt help make the world a better place for the 
creator’s mighty synchronization vision. 



	while	not	some_predicate():	
					CV.wait()	

 
What’s wrong with this? 
	random_fn1()	
	CV.wait()	
	random_fn2()	

#9: Cover Thy Naked Waits  
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How about this? 
with	self.lock:		
			a=False		
			while	not	a:	
						self.cv.wait()		
						a=True	



 
What is wrong with this? 
	if	not	some_predicate():	
					CV.wait()	

#10: Guard your wait in a while loop 
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with	lock: 	 	 	 	 	What is wrong with this?	
		while	not	condA:		
						condA_cv.wait()	
		while	not	condB:		
						condB_cv.wait()	
 
Better: 
with	lock:	
		while	not	condA	or	not	condB:	
				if	not	condA:		
						condA_cv.wait()	
				if	not	condB:		
						condB_cv.wait()	
 

#11: Thou shalt not split predicates  
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• Use consistent structure 
• Always hold lock when using a 

condition variable 
• Never spin in sleep() 

A few more guidelines 
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Several ways to handle them 
•  each has its own pros and cons 

Programming language support simplifies writing 
multithreaded applications 

•  Python condition variables 
•  Java and C# support at most one condition variable 

per object, so are slightly more limited 

Some program analysis tools automate checking 
•  make sure code is using synchronization correctly 
•  hard part is defining “correct” 

Conclusion: Race Conditions are a big pain! 
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1.  Foundations, slides 1-26 
•  Activity: too much milk 

2.  Semaphores, slides 27-42, 48-51 
•  Activity: Producer-Consumer w/Semaphores 

3. Monitors & Condition Variables, 52-69 
•  Activity: before monitors, do Rdrs/Writer (43-47 

that you left out before), Producer Consumer 
M&CVs 

4. CV Semantics, vs. Semaphores, 76-83 
•  Activity: Readers/Writer with M&CVs (70-72) 

5. CV mistakes & rules,  
•  Barrier Synchronization (73-75), Maybe 

barbershop? 

Lecture Schedule 
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self.allCheckedIn	=	Condition(self.lock)	
self.allLeaving	=	Condition(self.lock)	
	
def	checkin():	
	nArrived++	

			if	nArrived	<	nThreads:							//	not	everyone	has	checked	in	
			while	nArrived	<	nThreads:	
		 	allCheckedIn.wait()											//	wait	for	everyone	to	check	in	

			else:	
					nLeaving	=	0															//	this	thread	is	the	last	to	arrive	
				allCheckedIn.broadcast()			//	tell	everyone	we’re	all	here!	

	
	nLeaving++	
	if	nLeaving	<	nThreads:													//	not	everyone	has	left	yet	
		while	nLeaving	<	nThreads:	
		 	allLeaving.wait()														//	wait	for	everyone	to	leave	

			else:	
					nArrived	=	0															//	this	thread	is	the	last	to	leave	
					allLeaving.broadcast()					//	tell	everyone	we’re	outta	here!	

 Implementing barriers is not easy.   
 Solution here uses a “double-turnstile” 

Checkin with 2 condition variables 
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