
Architectural Support
for Operating Systems

(Chapter 2)
CS 4410

Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

Let’s start at the very beginning

2

A Short History of
Operating Systems

3

History of Operating Systems
Phase 1: Hardware expensive, humans cheap

  User at console: single-user systems
  Batching systems
  Multi-programming systems

4

Hand programmed
machines (1945-1955)
  Single user systems

  OS =
 loader + libraries

  Problem:
 low utilization of

expensive components

5

Batch Processing �
(1955-1965)

  OS = loader +
 sequencer +
 output processor

Tape	

Input

Printer	Operating System

“System Software”

User Program

User Data

Output

Compute

Tape	

Card	
Reader	

6

Multiprogramming �
(1965-1980)
  Keep several jobs in memory
  Multiplex CPU between jobs.

Operating System

“System Software”

User Program 1

User Program 2

User Program n

system	call	Read(var)	
begin	
		StartIO(input	device)	
		WaitIO(interrupt)	
		EndIO(input	device)	
		...	
end	Read	

program	P	
begin	
		...	
		Read(var)	
		...	
end	P	

7

Multiprogramming �
(1965-1980)
  Keep several jobs in memory
  Multiplex CPU between jobs.

Operating System

“System Software”

User Program 1

User Program 2

User Program n

Process 1 I/O
Device

k: read()

k+1:

endio()
interrupt

main{

}

}

OS

read{

startIO()
waitIO()

8

Multiprogramming �
(1965-1980)
  Keep several jobs in memory
  Multiplex CPU between jobs.

Operating System

“System Software”

User Program 1

User Program 2

User Program n

Process 1 I/O
Device

k: read()

k+1:

endio{
interrupt

main{

}

}

OS

read{

startIO()
schedule()

Process 2

main{
}

schedule()

9

History of Operating Systems
Phase 1: Hardware expensive, humans cheap

  User at console: single-user systems
  Batching systems
  Multi-programming systems

Phase 2: Hardware cheap humans expensive
  User at console: single-user systems

10

Timeshareing�
(1970-)
  Timer interrupt used to multiplex CPU between jobs

Operating System

“System Software”

User Program 1

User Program 2

User Program n

Process 1

k:

k+1:

main{

OS

schedule(){

Process 2

main{
}

timer
interrupt

timer
interrupt

schedule(){

}

schedule(){

}

timer
interrupt

11

History of Operating Systems
Phase 1: Hardware expensive, humans cheap

  User at console: single-user systems
  Batching systems
  Multi-programming systems

Phase 2: Hardware cheap humans expensive
  User at console: single-user systems

Phase 3: H/W very cheap humans very expensive
  Personal computing: One system per user
  Distributed computing: many systems per user
  Ubiquitous computing: LOTS of systems per users

12

THE END
13

When does life begin?

14

In the BIOS! ROM
technology

 (non-volatile)
 Basic Input/Output System

http://www.partesdeunacomputadora.net/motherboard/que-es-la-bio

Where

On System Start Up

15

DISK

bootloader

OS kernel

startup app

time

• BIOS copies bootloader into memory
• Bootloader copies OS kernel into

memory
• Kernel:
•  Initializes data structures (devices, core

map, interrupt vector table, etc.)
•  Copies first process from disk
•  Change privilege mode & PC
•  And the dance begins! PC has

code from:
privilege mode: 0 0 0 1

One Brain, Many Personalities

16
https://www.theodysseyonline.com/are-our-apps-wasting-our-time

time

1. Privilege mode bit (0=kernel, 1=user)
 Where? x86 → EFLAGS reg., MIPS →status

reg.
2. Privileged instructions

 user mode à no way to execute unsafe
insns

3. Memory protection
 user mode à memory accesses outside a

 process’ memory region are prohibited
4. Timer interrupts

 kernel must be able to periodically regain
 control from running process

5.  Efficient mechanism for switching
modes
 must be fast because it happens a lot!

Supporting dual mode operation

17

• Some processor functionality cannot
be made accessible to untrusted user
apps

• Must differentiate user apps vs. OS
code

Solution: Privilege mode bit indicates if
current program can perform privileged
operations

 0 = Trusted = OS
 1 = Untrusted = user

Privilege Mode Bit

18

Examples:
•  changing the privilege mode
•  writing to certain registers (page table base reg)
•  enabling a co-processor
•  changing memory access permissions
•  signal other users’ processes
•  print character to screen
•  send a packet on the network
•  allocate a new page in memory

CPU knows which instructions are privileged:
insn==privileged	&&	mode==1	à Exception!

Privileged Instructions

19

achieved
via system

call

Step 1: Virtualize Memory
• Virtual address space: set of memory

 addresses that process can “touch”
 (CPU works with virtual addresses)

• Physical address space: set of
memory addresses supported by
hardware

Step 2: Address Translation
•  function mapping <pid, vAddr> à

<pAddr>

Sit tight. We’ll talk all about this in
March.

Memory Protection

20

1. Privilege bit
2. Privileged instructions

3. Memory protection

4. Timer interrupts

5. Efficient mechanism for switching
modes

Supporting dual mode operation

21

Timer Interrupts:
•  Hardware timer set to expire after specified

delay (time or instructions)
•  Time’s up? Control passes back to kernel.

More Generally: Hardware Interrupts
•  External Event has happened.
•  OS needs to check it out.
•  Process stops what it’s doing, invokes OS,

which handles the interrupt.

Interrupts

22

time

Interrupt controllers manage interrupts
•  Interrupts have descriptor of interrupting

device
•  Priority selector circuit examines all

interrupting devices, reports highest level to
the CPU

•  Interrupt controller implements interrupt
priorities

Interrupts can be maskable (can be turned off
by the CPU for critical processing) or
nonmaskable (signifies serious errors like
power out warning, unrecoverable memory
error, etc.)

Interrupt Management

23

CPU interrupt
controller interrupt

Memory-mapped I/O
•  Device communication goes over the memory bus
•  I/O operations by dedicated device hardware

correspond to reads/writes to special addresses
•  Devices appear as if part of the memory address space

Interrupt-driven operation with memory-mapped I/O:
•  CPU initiates device operation (e.g., read from disk):

writes an operation descriptor to a designated memory
location

•  CPU continues its regular computation (see slide 9)
•  The device asynchronously performs the operation
•  When the operation is complete, interrupts the CPU
•  Could happen for each byte read!

Aside 1: Interrupt Driven I/O

24

Interrupt-Driven I/O: Device ßà CPU ßà
RAM

for (i = 1 .. n)
•  CPU issues read request
•  Device interrupts CPU with data
•  CPU writes data to memory

+ Direct Memory Access (DMA): Device ßà
RAM

•  CPU sets up DMA request
•  for (i = 1 ... n)

 Device puts data on bus
 & RAM accepts it

•  Device interrupts CPU after done

Critical for high-performance devices

Aside 2: Direct Memory Access
(DMA)

CPU	 RAM	

DISK	

CPU	 RAM	

DISK	

25

1. Privilege bit
2. Privileged instructions

3. Memory protection

4. Timer interrupts

5. Efficient mechanism for switching
modes

Supporting dual mode operation

26

From User to Kernel

27

Exceptions
•  Synchronous
•  User program mis-steps (e.g., div-by-

zero)
•  Attempt to perform privileged insn

•  on purpose? breakpoints!

Interrupts

•  Asynchronous
•  HW device requires OS service

•  timer, I/O device, interprocessor

System Calls
•  Synchronous
•  User program requests OS

service

From Kernel to User

28

Resume P after
exception, interrupt or

syscall
•  Restore PC SP, registers
•  Restore mode

If new process

•  Copy in program
memory

•  Set PC & SP
•  Toggle mode

Switch to different
process Q

•  Load PC, SP, and
registers from Q’s
PCB

•  Toggle mode

Common sequences of instructions to
cross boundary, which provide:
•  Limited entry
- entry point in the kernel set up by kernel

•  Atomic changes to process state
- PC, SP, memory protection, mode

•  Transparent restartable execution
- user program must be restarted exactly as it

was before kernel got control

Safely switching modes

29

Hardware identifies why
boundary is crossed

•  System call?
•  interrupt (which device)?
•  exception?

•  Hardware selects entry
from interrupt vector

•  Appropriate handler is
invoked

Interrupt Vector

30

0
handleDivByZero()	{	
...	
}	

255

Interrupt Vector
(register)

Interrupt Vector

handleSysCall()	{	
...	
}	

handleTimerInt()	{	
...	
}	

Privileged hw reg. points to Interrupt
Stack

•  on switch, hw pushes some process
registers (SP, PC, …) on interrupt stack
before handler runs. (Why?)

•  handler pushes the rest
•  on return, do the reverse

Why not use user-level stack?
•  reliability
•  Security

One interrupt stack per process

Interrupt Stack

31

Stack

Data

Insn

Interrupt
Stack S

ys
te

m

re
se

rv
ed

Interrupt Stack
(register)

Hardware transfer to kernel:
1.  save privilege mode, set mode to 0
2.  mask interrupts
3.  save: SP, PC
4.  switches SP to the kernel stack
5.  save values from #3 onto kernel stack
6.  save error code
7.  set PC to the interrupt vector table
Interrupt handler
1.  saves all registers
2.  examines the cause
3.  performs operation required
4.  restores all registers
Performs “Return from Interrupt” insn (maybe)
•  restores the privilege mode, SP and PC

Complete Mode Transfer

32

1.  Initialize devices
2.  Initialize “first process”
3.  	while	(TRUE)	{	

•  while device interrupts pending
 - handle device interrupts
•  while system calls pending

 - handle system calls
•  if run queue is non-empty

 - select a runnable process and switch to
it

•  otherwise
 - wait for device interrupt

}	

Kernel Operation (conceptual,
simplified)

33

1. Privilege bit
2. Privileged instructions

3. Memory protection

4. Timer interrupts

5. Efficient mechanism for switching
modes

Made possible (and fast) by hardware!

Supporting dual mode operation

34

