
Introduction

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

• Software that manages a computer’s
resources

• Makes it easier to write the
applications you want to write

• Makes you want to use the
applications you wrote by running
them efficiently

Meet the OS

2

An Operating System implements a virtual
machine whose interface is more convenient*
than the raw hardware interface

* easier to use, simpler to code, more reliable, more secure...

“All the code you did not write”

What is an OS?

3

Operating System

Application Application Application Application Application

Hardware

OS Interface

Physical
Machine
Interface

Referee
•  Manages shared resources: CPU, memory,

disks, networks, displays, cameras, etc.

Illusionist
•  Look! Infinite memory! Your own private

processor!

Glue
•  Offers set of common services (e.g., UI

routines)
•  Separates apps from I/O devices

OS wears many Hats

4

OS as Referee

5

Resource allocation
• Multiple concurrent tasks, how does OS

decide who gets how much?
Isolation
• A faulty app should not disrupt other apps

or OS
• OS must export less than full power of

underlying hardware
Communication/Coordination
• Apps need to coordinate and share state

OS as Illusionist (1)

6

Illusion of resources not physically
present
Virtualization:
•  processor, memory, screen space, disk, network
•  the entire computer:

•  fooling the illusionist itself!
•  ease of debugging, portability, isolation

Operating System (VMM)
App

Hardware

Virtual
Machine
Interface

App Guest OS Guest OS

App App

Illusion of resources not physically
present
• Atomic operations
•  HW guarantees atomicity at word level
- what happens during concurrent updates to

complex data structures?
- what if computer crashes during a block

write?
•  At the hardware level, packets are lost…

• Reliable communication channels

OS as Illusionist (2)

7

OS as Glue

8

Offers standard services to simplify app
design and facilitate sharing
•  send/receive of byte streams
•  read/write files
•  pass messages
•  share memory
•  UI

Decouples HW and app development

To Learn:
• How to manage complexity through

appropriate abstractions
-  infinite CPU, infinite memory, files, locks,

etc.
• About design
•  performance vs. robustness, functionality

vs. simplicity, HW vs. SW, etc.
• How computers work

Because OSs are everywhere!

Why Study Operating Systems?

9

10

Where’s the OS?
Las Vegas

11

Where’s the OS?
New York

12

13

14

What will this course be like?

15

Constructive, top-down
Start from first principles and re-derive
the design of every component of a
complex system

Deconstructive, bottom-up
Dissect existing systems, learn what
tradeoffs they make, what patterns they
use

What kind of a course is this?

19

20

System Building
• Reliability
• Availability
• Portability
• Efficiency
• Security

System Building is Hard!

•  Safety-critical system with software interlocks
•  Beam controlled entirely through a custom

OS

Therac-25 [1982]

21

• Old system used a hardware interlock
•  Lever either in the “zap” or “x-ray”

position

• New system was computer controlled

• A synchronization failure was triggered
when competent nurses used the back
arrow to change the data on the
screen “too quickly”

Therac-25

22

• Beam killed one person directly, burned
others, and may have given inadequate
treatment to cancer patients

• Problem was very difficult to diagnose;
initial fix involved removal of the back
arrow key from the keyboard

• People died because a programmer
could not write correct code for a
concurrent system

•  36 Year Later…. Now what?

Therac-25 Outcome

23

• We do not have the necessary
technologies and know-how to build
robust computer systems

• The world is increasingly dependent on
computer systems
-  Connected, networked, interlinked

• There is huge demand for people who
deeply understand and can build robust
systems (most people don’t and can’t)

System Building is Hard

24

•  Structure: how is the OS organized?
•  Concurrency: how are parallel activities

created and controlled?
•  Sharing: how are resources shared?
•  Naming: how are resources named by

users?
•  Protection: how are distrusting parties

protected from each other?
•  Security: how to authenticate, authorize, and

ensure privacy?
•  Performance: how to make it fast?

Issues in OS Design

25

•  Reliability: how do we deal with failures??
•  Portability: how to write once, run

anywhere?
•  Extensibility: how do we add new features?
•  Communication: how do we exchange

information?
•  Scale: what happens as demands increase?
•  Persistence: how do we make information

outlast the processes that created it?
•  Accounting: who pays the bill and how do

we control resource usage?

More Issues in OS Design

26

Ostensibly, operating systems
•  architecting complex software
•  identifying needs and priorities
•  separating concerns
•  implementing artifacts with desired

properties

In Reality, software design principles
•  OSes happen to illustrate organizational

principles and design patterns

This is a Capstone Course. Get Ready!

What’s this course about?

27

