

Recitation 6: Filesystems

Kai Mast

Filesystem Abstraction

Virtual Disk
(e.g. /dev/ubuntu-vg)

Partition 1
(/dev/ubuntu-vg/

disk1)

Partition 2
(e.g. /dev/ubuntu-vg

/disk2)

Disk 1
(e.g. /dev/sda)

Disk 2
(e.g. /dev/sdb)

ext4
(mounted to /)

btrfs
(mounted to /home/kai)

One size fits it all?

Assuming a spinning disk, which one performs well for...

● Doing many “random” writes?
● Reading many small-files?
● Being space-efficient
● Unpredictable workloads?

Some options: NTFS, FAT, ZFS...

Filesystem Caches

Simple idea: Keep data in memory to avoid
expensive reads from disk and batch writes.

● Why batching writes?
● What could possibly go wrong?

Unix Filesystem Inode

#
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

:Data block

:Indirect pointer

:Triple Indirect
pointer

:Indirect block

Legend

…
…

… …

…

……

……

…

…

……
……

Practice Question 1

A disk has a partition on it, subdivided into blocks of 2^13
bytes.
You want to put a Unix-like file system on the partition,
with one superblock in position 0, followed by a
sequence of blocks filled with i-nodes. Each i-node is
128 = 2^7 bytes. You want to have enough i-nodes to
store 2^20 files.

How many i-node blocks are needed?

(2^20 x 2^7) / 2^13 = 2^14

Practice Question 2
A block pointer identifies a block on the partition, and is 4 bytes long
(enough to identify 2^32 blocks). An “indirect block” (a block filled
with block pointers) can have 8192 / 4 = 2048 (2^11) block pointers.

Suppose now that an i-node contains 13 block pointers. The first 10
point to the first 10 data blocks. The next three point to an indirect
block, a double indirect block, and a triple indirect block. The
maximum file size can be approximated by just the number of data
blocks reachable from the triple indirect block pointer (the rest is
negligible).

In theory, how much data (in bytes) could be accessed from the
triple indirect block pointer in the i-node? For this question,
assume the size of the disk is unbounded.

(2^11)^3 * 2^13 = 2^46

Practice Question 3
Assume now that the file system cache is empty except
for the superblock. Assume the file with i-node #2015 has
the string “Hello World” in it (that is, the file is just 11
bytes long).

How many disk accesses would be necessary to read
the contents of this file, given that you (and the kernel)
know the i-node number?

1)read inode-bock containing inode #2015 to
find the data block number

2)read the data block itself

Practice Question 4
In reality this same file’s i-node number has to be retrieved first.
Suppose the name of the file is /etc/test.txt. Assume that the
contents of each directory fits in a single block. The root
directory / is described in i-node #2 by convention. Assume /etc
is in i-node #5 (you know this, but the kernel doesn’t).

Again, assuming only the superblock is in the cache and a
cache large enough so the same block never has to be read
more than once, how many disk accesses are required to read
the file?

1)read block with inode of root directory (#2) to
find location of root directory

2)read root directory to find inode # of etc. (#5)
 (block with /etc inode already in cache)

3)read etc directory to find inode # of test.txt
4)read inode block with inode #2015
5)read the content of the file itself

Practice Question 5
 File /etc/shakespeare.txt (which you know to be in i-node #7,
but the kernel doesn’t) contains the complete works of
Shakespeare (2^22bytes or about 4Megabytes).

Assuming only the superblock is in the cache, how many disk
accesses are required to retrieve the whole thing?

● read block with inode of root directory (#2) to find location of
root directory

● read root directory to find inode # of etc
● (inode block with etc inode (#5) to find location of etc directory

already in cache)
● read etc directory to find inode # of shakespeare.txt
● (inode block with shakespeare inode (#7) already in cache)
● read the first 10 direct blocks
● read the indirect block
● read the remaining 512 - 10 = 502 blocks

=> 516 in total

Practice Question 6
Suppose somebody wants to add the text "All's Well That Ends Well.” to the end
of the complete works of Shakespeare (the new text will be contained in a new
data block at the very end).

Suppose that the file system has only the superblock in its cache and can
allocate free blocks without going to the disk.

How many disk reads and how many disk writes are necessary (assuming a
“write-through” cache? (Assume that among the i-nodes only i-node #7 has to
be updated for this operation.)

Reads:
● block with i-node of root directory (#2) to find location of root directory
● root directory to find inode # of etc (#5)
● inode block with etc inode (#5) to find location of
● etc directory to find inode # of shakespaere.txt
● the indirect block

Writes:
● allocate and write the new data block
● the updated indirect block
● update size and last modified time in inode #7 and write the inode block

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Ufsdisk: inode (1 per virtual blockstore)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

