

Recitation 3:
Synchronisation

Kai Mast

E L 3 3 T H 4 X 0 R ?

Which of the following is the best way to wait for
two predicates to be true?

Which of the following are (virtually) shared by
threads within a single process?

(A) Heap

(B) Stack

(C) Code / Program Text

(D) Registers

Which of the following operations require the
executing code to be operating with high privilege?

(A) Implementing a monitor

(B) Performing a semaphore P operation

(C) Accessing the device registers of an I/O device, e.g.

the disk, keyboard, or network card

(D) Disabling interrupts

(E) Making a system call

You are using a semaphore package which
provides 3 functions: init(), P(), and V().

Which of the following changes to the package
could affect the correctness of your code?

(A) P is modified so that it busy-waits instead of yielding when a

resource isn’t available.:

(B) init is modified so that it only accepts 0 or 1 as an initial value.

(C) The implementation stores the count in an unsigned int instead of a

signed int.

(D) V is modified so that it wakes the thread that most recently called P.

(E) Asserts are removed from all three functions.

What are the two main correctness properties for
(operating) systems?

(A) Safety and Soundness

(B) Soundness and Correctness

(C) Freedom and Democracy

(D) Safety and Liveness

(E) Concurrency and Performance

Which of the following statements about threads is
false?

(A) Multi-threading is only useful on a multi-core
processor.

(B) Multi-threading is only useful when a task can be
parallelized.

(C) There are performance benefits to running threads
of the same process one after the

other on the same processor.

(D) Multi-threading requires operating system support
for managing multiple PCBs

Compare and Set:
Use this simple primitive

for the next two questions

ATOMIC bool CAS(int *addr, int oldval, int newval)
{

 if (*addr != oldval)

 return false;

 *addr = newval;

 return true;

}

Implement Test-And-Set

bool TAS(int *addr)

{
 return CAS(addr, 0, 1);

}

Implement Atomic Increment

void increment(int *addr)

{

 int oldval = *addr;

 while (!CAS(addr, oldval, oldval+1))

 oldval = *addr;

 }

Implement Atomic List Append
struct item {

 // points to previous item added to the list

 // (NULL for first item)

 struct item *prev;

 int value; // contains the value in this entry

};

// points to last item added to the list (null if list
is empty)

struct item *list = NULL;

void add(int val) { // add value to the list

struct item *node = malloc(sizeof(structitem));

node->value = val;

node->prev = list; //replace these 2 lines

list = node; //with thread safe code

Implement Atomic List Append
struct item {

 // points to previous item added to the list

 // (null for first item)

 struct item *prev;

 int value; // contains the value in this entry

};

// points to last item added to the list

struct item *list = NULL;

void add(int val) { // add value to the list

struct item *node = malloc(sizeof(structitem));

node->value = val;

do {

node->prev = list;

} while (!CAS(&list, node->prev, node);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

