Project-6: Unix-like File
System Layer

Kai Mast
May 5™ 2017

(original slides by Efe Gencer)

Project Scope

Implement a Unix-like file system
layer: ufsdisk.

Use free space bitmaps to keep
track of free and used blocks.
(Optional) Implement a file system
checker (i.e. fsck) to check the
integrity of your file system.

Recap: Intro

File systems are built on one or more block
stores.

The block store abstraction provides:
a disk-like interface: read / write blocks

a sequence of blocks -- each typically a few
kilobytes

The block store abstraction doesn’t deal with:
file naming
user permissions
distinguishing files from directories

Recap: Block Store Abstraction

block t block
block of size BLOCK SIZE
nblocks() -> integer
returns size of the block store in #Dblocks

read(block number) -> block
returns the contents of the given block number

write(block number, block)
writes the block contents at the given block number

setsize(nblocks)
sets the size of the block store

Recap: block if.h

#define BLOCK SIZE 512 /| # bytes in a block
typedef unsigned int block no; // index of a block

struct block { char bytes[BLOCK SIZE]; };
typedef struct block block t;

typedef struct block if *block_if;

struct block if {
void *state;
int (*nblocks)(block_if bif);
int (*read)(block _if bif, block no offset, block t *block);
int (*write)(block _if bif, block _no offset, block t *block);
int (*setsize)(block if bif, block no size);
void (*destroy)(block_if bif);

Ufsdisk: layout

'}l A J\ J
| | I

super inode freebitmap remaining blocks

block blocks blocks

Ufsdisk: superblock (1 per
underlying blockstore)

struct ufs_superblock {
// magic number of ufsdisk
// 1dentifies the filesystem
unsigned int magic_number;

block_no n_inodeblocks;
block_no n_freebitmapblocks;

+

Ufsdisk: inodeblock

#define INODESperBLOCK
(BLOCK_SIZE / sizeof(struct ufs_inode))

struct ufs_inodeblock {
struct ufs_1inode 1nodes[INODESperBLOCK];

+

Ufsdisk: inode (1 per virtual
blockstore)

#define REFS_PER_INODE 15

struct ufs_inode {
// total size of the file
block_no nblocks;
block_no refs[REFS_PER_INODE];

I

Ufsdisk: inode
(1 per virtual blockstore)
Legend

D :Data block
D :Indirect block

l] :Number of blocks
| | :Direct pointer

[:Indirect pointer
B :Double Indirect

pointer

B :Triple Indirect

pointer
:Other data blocks

:Other indirect
blocks

Free space bitmaps
Blocks -
: T . —\ | ' 1
supe}r/m/'ode/ freebitmap remslining blocks
bloc block blocks

O: block is not In use
1: block is In use

Ufsdisk: freebitmap blocks

“ Each freebitmap block is a list of bits
“ How many freebitmap blocks, f, do | need?

= n_inodes
INODES PER BLOCK

1+ BLOCK _SIZE * 23

[nblocks |

[=

File system checker

Verifies the consistency of your filesystem -
e.qg. try fsck (UNIX), chkdsk (Windows).

If system crashes, filesystem may be
corrupted.

Checks filesystems -- and repairs fixable
Issues if broken.
a datablock is in use but marked as free.

a particular block is both an indirblock and
datablock.

a particular datablock has been used more than
once.

other issues...

Questions?

This is the last project!

Begin early so you have time to study for
the finals.

	Slide 1
	Project Scope
	Recap: Intro
	Recap: Block Store Abstraction
	Recap: block_if.h
	Ufsdisk: layout
	Ufsdisk: superblock (1 per underlying blockstore)
	Ufsdisk: inodeblock
	Ufsdisk: inode (1 per virtual blockstore)
	Ufsdisk: inode (1 per virtual blockstore)
	Free space bitmaps
	Ufsdisk: freebitmap blocks
	File system checker
	Concluding thoughts

