

CS4411 Project 5:
Link-State Routing

presented by Kai Mast
(Original slides by Soumya Basu)

Main Goals of this Assignment

● Learn the userspace side of networking
● Learn to work with an existing codebase
● Learn the standard C socket API
● Learn how to handle multiple connections in a

single application.

Three Main Parts to the Project

● Setting up connections between nodes

● Broadcasting packets through the network

● Calculate shortest paths using Dijkstra’s
Algorithm

Revisiting Stream Based
Networking

● TPC has no notion of messages
● one send() might be split into multiple recv()’s

on the other side
– and vice versa…

● Application layer needs to convert stream into
messages (if needed)

Setting up the socket

int s = socket(AF_INET, SOCK_STREAM);

sockaddr_in addr;
addr.sin_port = htons(1337);
addr.sin_addr = IN_ADDR_ANY;

bind(s, &addr, sizeof(addr));

Make sure you handle errors in your
implementation!

TCP is connection-based

listen(s);
accept(s);

connect(s, &bob_addr,
 sizeof(bob_addr));

SYN

accept returns
new socket for Alice

ACK

SYN, ACK

connect returns
successfully

Bob Alice

TCP is stream-based

The kernel allocates a send and a receive
buffer for each socket.

● Buffers are FIFO
● send() appends to the local send buffer
● receive() takes data from the front of the local

receive buffers
● OS takes care of emptying send buffer and

filling receive buffer

epoll()
wait for different kinds of events on multiple

filedescriptors

Using a single blocking
socket

Using multiple non-blocking
sockets and epoll()

poll() is fine too

Creating an epoll() object

#include <sys/epoll.h>

int efd = epoll_create1();

Note: epoll only works on Linux

Setting up a socket for epoll()

// make socket nonblocking

fctnl(s, F_SETFL, SO_NONBLOCK);

// hand socket to epoll

struct epoll_event event;

event.data.fd = s;

event.events = EPOLLIN | EPOLLOUT | EPOLLHUP;

epoll_ctl (efd, EPOLL_CTL_ADD, s, &event);

Bitmask specifies which
events to wait for

Handling events with epoll()

struct event *events = calloc (MAXEVENTS, sizeof(event));

while (true) { // loop during the lifetime of the program

 int n = epoll_wait (efd, events, MAXEVENTS, -1);

 for (int i = 0; i < n; i++) {

 if ((events[i].events & EPOLLERR) {

 // error happened

 } else if (events[i].events & EPOLLIN) {

 // socket is ready to read

 } else if (events[i].events & EPOLLOUT) {

 // socket is ready to write

 }

 }

}

“Gossiping” messages

A

B

C D

E

A has a message to send

“Gossiping” messages

A

B

C D

E

It forwards to all its neighbors

“Gossiping” messages

A

B

C D

E

They do the same
Optimization 1: Ignore neighbor that sent original message

“Gossiping” messages

A

B

C D

E

D and E forward.
Optimization 2: Ignore messages you already saw.

“Gossiping” messages

A

B

C D

E

System is stable: All parties have received the message.

Let’s use Gossip for Link State
Routing!

● Each node in the network forwards it’s current
configuration (i.e. list of neighbors using gossip)

● Once a node receives a new message, it runs
Dijkstra to find optimal route

● Simplification: All edges have weight 1
→ But your Dijstra implementation needs to work with
other weights too

Message Handling

Two ways to receive messages:
● Through user input in a command prompt (i.e.,

you type the messages in the console)
● As a network package from another node

All messages use a simple plaintext protocol*

*That is probably not something you want to do for a serious project but sufficient for Prac

Strings in C

char *str = “cornell”;

c o r n e l l \0

str points
here

Strings in C

char *str = “cornell”;

char *str2 = str+5;

c o r n e l l \0

str points
here

str2 points
here

Note: Make sure you don’t overflow
your buffer. strlen() is your friend!

Array Semantics on C Strings

char *str = “cornell”;

char c1 = str[3];

char c2 = *(str+1);

c o r n e l l \0

str points
here

Comparing string in C

char *str1 = “foo”;

char *str2 = “foo”;

char *str3 = “fo”;

What is the difference? Which of those is true?
● str1 == str2
● str1[2] == str2[2]
● strcmp(str1, str2, strlen(str1)) == 0
● strcmp(str1, str3, strlen(str3)) == 0
● strcmp(str1, str3, strlen(str1)) == 0

Telling a node to do stuff

C<addr>:<port>\n
– Connect to the specified address

S<dst_addr:port>/<TTL>/<payload>\n

– Send data over the network
– TTL specifies maximum number of hops
– Payload is the actual content of the message

Gossip protocol

G<src_addr>:<src_port>/<counter>/<payload>\n

– Counter is a message ID used to detect duplicate messages

– It should increase with every new gossip message

Where the payload is the list of neighbors:

;<addr1:port1>;<addr2:port2>;<addr3:port3>...

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0

B ∞

C ∞

D ∞

E ∞

2

1

1

3

4

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0 empty

B 2 B

C 4 C

D ∞

E ∞

2

1

1

3

4

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0 empty

B 2 B

C 4 C

D 5 B→D

E 3 B→E

2

1

1

3

4

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0 empty

B 2 B

C 4 C

D 4 B→E→D

E 3 B→E

2

1

1

3

4

We found a shorter route to D!

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0 empty

B 2 B

C 4 C

D 4 C→E→D

E 3 C→E

2

1

1

3

4

No change!

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0 empty

B 2 B

C 4 C

D 4 B→E→D

E 3 B→E

2

1

1

3

4

No change and done!

How to approach the project

● Start by reading the skeleton code
– You can modify it but it is a good point to start with

● Optional: Write some “unit tests” for your
Dijkstra implementation

● Try to get connections between two peers to
work.

● Then figure out the rest...

Don’t forget to test!

● Can you successfully connect a network of
nodes?
– They can all run on the same VM

● Do your routes reconfigure once a node
(dis-)connects?

● Can you successfully send messages using the
established routes?

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

