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Main Goals of this Assignment

● Learn the userspace side of networking
● Learn to work with an existing codebase
● Learn the standard C socket API
● Learn how to handle multiple connections in a 

single application.



  

Three Main Parts to the Project

● Setting up connections between nodes

● Broadcasting packets through the network

● Calculate shortest paths using Dijkstra’s 
Algorithm



  

Revisiting Stream Based 
Networking

● TPC has  no notion of messages
● one send() might be split into multiple recv()’s 

on the other side
– and vice versa…

● Application layer needs to convert stream into 
messages (if needed)



  

Setting up the socket

int s = socket(AF_INET, SOCK_STREAM);

sockaddr_in addr;
addr.sin_port = htons(1337);
addr.sin_addr = IN_ADDR_ANY;

bind(s, &addr, sizeof(addr));

Make sure you handle errors in your 
implementation!



  

TCP is connection-based

listen(s);
accept(s);

connect(s, &bob_addr,
  sizeof(bob_addr));

SYN

accept returns
new socket for Alice

ACK

SYN, ACK

connect returns
successfully

Bob Alice



  

TCP is stream-based

The kernel allocates a send and a receive 
buffer for each socket.

●  Buffers are FIFO
●  send() appends to the local send buffer
●  receive() takes data from the front of the local 

receive buffers
● OS takes care of emptying send buffer and 

filling receive buffer



  

epoll()
wait for different kinds of events on multiple 

filedescriptors

Using a single blocking 
socket

Using multiple non-blocking 
sockets and epoll()

poll() is fine too 



  

Creating an epoll() object

#include <sys/epoll.h>

int efd = epoll_create1();

Note: epoll only works on Linux



  

Setting up a socket for epoll()

// make socket nonblocking

fctnl(s, F_SETFL, SO_NONBLOCK);

// hand socket to epoll

struct epoll_event event;

event.data.fd = s;

event.events = EPOLLIN | EPOLLOUT | EPOLLHUP;

epoll_ctl (efd, EPOLL_CTL_ADD, s, &event); 

Bitmask specifies which
events to wait for



  

Handling events with epoll()

struct event *events = calloc (MAXEVENTS, sizeof(event));

while (true) { // loop during the lifetime of the program

     int n = epoll_wait (efd, events, MAXEVENTS, -1);

     for (int i = 0; i < n; i++) {

           if ((events[i].events & EPOLLERR) {

             // error happened

           } else if (events[i].events & EPOLLIN) {

               // socket is ready to read

           } else if (events[i].events & EPOLLOUT) {

               //  socket is ready to write

           }

     }

}



  

“Gossiping” messages

A

B

C D

E

A has a message to send



  

“Gossiping” messages

A

B

C D

E

It forwards to all its neighbors



  

“Gossiping” messages

A

B

C D

E

They do the same
Optimization 1: Ignore neighbor that sent original message



  

“Gossiping” messages

A

B

C D

E

D and E forward.
Optimization 2: Ignore messages you already saw.



  

“Gossiping” messages

A

B

C D

E

System is stable: All parties have received the message.



  

Let’s use Gossip for Link State 
Routing!

● Each node in the network forwards it’s current 
configuration (i.e. list of neighbors using gossip)

● Once a node receives a new message, it runs 
Dijkstra to find optimal route

● Simplification: All edges have weight 1
→ But your Dijstra implementation needs to work with 
other weights too



  

Message Handling

Two ways to receive messages:
● Through user input in a command prompt (i.e., 

you type the messages in the console)
● As a network package from another node

All messages use a simple plaintext protocol*

*That is probably not something you want to do for a serious project but sufficient for Prac



  

Strings in C

char *str = “cornell”;

c o r n e l l \0

str points 
here



  

Strings in C

char *str = “cornell”;

char *str2 = str+5;

c o r n e l l \0

str points 
here

str2 points 
here

Note: Make sure you don’t overflow 
your buffer. strlen() is your friend!



  

Array Semantics on C Strings

char *str = “cornell”;

char c1 = str[3];

char c2 = *(str+1);

c o r n e l l \0

str points 
here



  

Comparing string in C

char *str1 = “foo”;

char *str2 = “foo”;

char *str3 = “fo”;

What is the difference? Which of those is true?
● str1 == str2
● str1[2] == str2[2]
● strcmp(str1, str2, strlen(str1)) == 0
● strcmp(str1, str3, strlen(str3)) == 0
● strcmp(str1, str3, strlen(str1)) == 0



  

Telling a node to do stuff

C<addr>:<port>\n
– Connect to the specified address

    
S<dst_addr:port>/<TTL>/<payload>\n

– Send data over the network
– TTL specifies maximum number of hops
– Payload is the actual content of the message

      



  

Gossip protocol

G<src_addr>:<src_port>/<counter>/<payload>\n

– Counter is a message ID used to detect duplicate messages

– It should increase with every new gossip message

Where the payload is the list of neighbors:

;<addr1:port1>;<addr2:port2>;<addr3:port3>...



  

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0

B ∞

C ∞

D ∞

E ∞

2

1

1

3

4



  

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0  empty

B 2 B

C 4 C

D ∞

E ∞

2

1

1

3

4



  

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0  empty

B 2 B

C 4 C

D 5 B→D 

E 3 B→E

2

1

1

3

4



  

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0  empty

B 2 B

C 4 C

D 4 B→E→D 

E 3 B→E

2

1

1

3

4

We found a shorter route to D!



  

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0  empty

B 2 B

C 4 C

D 4 C→E→D 

E 3 C→E

2

1

1

3

4

No change!



  

Dijkstra’s Algorithm
(from A’s point of view)

A

B

C D

E

Target Distance Route

A 0  empty

B 2 B

C 4 C

D 4 B→E→D 

E 3 B→E

2

1

1

3

4

No change and done!



  

How to approach the project

● Start by reading the skeleton code
– You can modify it but it is a good point to start with

● Optional: Write some “unit tests” for your 
Dijkstra implementation

● Try to get connections between two peers to 
work.

● Then figure out the rest...



  

Don’t forget to test!

● Can you successfully connect a network of 
nodes?
– They can all run on the same VM

● Do your routes reconfigure once a node 
(dis-)connects?

● Can you successfully send messages using the 
established routes? 



  

Questions?
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