
Project 4:
Rel iable N e t w o r k i n g

Slide	heritage:	Previous	TAs	

Announcements
● Project 4 has been released
● I assume you’ve read the project description
● Due Friday, April 14th
● This is a pretty complex project ⇨ Startearly!

UDP TCP

Internet Protocol

Ethernet (or similar) Host OS UDP Stack

network.h

minimsg minisocketTransport Layer

Network Layer

Link Layer

Our n e t w o r k stack vs. the real w o r l d

TCP/IP Stack PortOS Network Stack

Min isocke t is a simpl i f ied TCP
● Protocol is connection oriented

○ You must find a way to establish a connection between two endpoints
● Data is sent as a continuous stream of bytes

○ Messages are an application level concept
○ Minisocket must maintain correct ordering

● No limit on message sizes
○ You must fragment and reassemble the data

State Mach ine

Listening

Connecting

Fail

connection failed

minisocket_client_create

minisocket_server_create

Connected

received
connection

connection
accepted

Sending

message
sent minisocket_send

Receiving

minisocket_receive

message
received

either side calls
minisocket_close

Closed

other party
doesn’t reply

Other party sends FIN

Of course, it ’s much more complicated...

TCP State Machine
Source: Wikipedia/Cube00
License: CC BY-SA 3.0

W h a t can go wrong?
● Any party can die
● Messages can get lost
● Data might be reordered
● Network might be partitioned

Welcome to the fun world of distributed systems!

Connec t ing : Three-Way Handshake

Client Server
MSG_SYN

MSG_SYNACK

MSG_ACK

Non-blocking protocol
● Any packet might be lost
● Will be resent up to seven times
● Timeout doubles every time

Initial Timeout: 100ms
* Give up after 12.7s

Messages can get lost

Client Server

MSG_SYNACK

MSG_ACK

Lost

MSG_SYN

MSG_SYN

Timeout

Messages can get lost

Client Server
MSG_SYN

Timeout

MSG_SYNACK

MSG_ACK

MSG_SYNACK

Lost

Note: In this case both parties might retransmit

Messages can get lost

Client Server

MSG_ACK

MSG_SYN

Timeout

MSG_SYNACK

Lost
MSG_ACK

MSG_SYNACK

Messages can get lost mu l t ip le t imes

Server

MSG_SYNACK

MSG_ACK

Lost

Lost

Client
MSG_SYN

Timeout
MSG_SYN

MSG_SYN

Timeout

Sending Data: SEQ and ACK Numbers

Sender Receiver

MSG_ACK with
ack_number=34

MSG_ACK with
seq_number=34 and“hodor”

seq_number represents how
many packets have been sent
⇨ is used to order messages

ack_number shows total received
packets
⇨ is used to resend lost messages

Note: This is a symmetric channel. Both
parties can send and receive.

Again, messages can get lost

Sender Receiver
seq_number=34 with“hodor”

Lost

ack_number=34

Timeout

seq_number=34 with“hodor”

Again, messages can get lost

Sender Receiver
seq_number=34 with“hodor”

ack_number=34Timeout

Lost

seq_number=34 with“hodor”

ack_number=34

Either side can send and receive!

Participant 1 Participant 2
seq=34,ack=12 with“hodor”

seq=12,ack=34

seq=13,ack=34 with“arya”

seq=34,ack=13

Closing connections

Client Server
MSG_FIN

MSG_ACK

Again, this is a symmetric
protocol.
Both sides can close the
connection.

Min isocke t Header
Bytes 0 1 2 3 4 5 6 7

0

8

16

24

source_port

destination_port

source_addressprotocol

destination_address

type seq_number

ack_number

The first 21 bytes are identical to minimsg_header!

Use protocol field to multiplex protocols.

T r i c k y Part : H o w to imp lement t imeout?
Remember that:

● Parties might never respond
● Multiple threads can call minisocket_receive() on the sameport
● At most one thread can call minisocket_send() on a port

Things you must avoid:

● Putting threads on the run queue more thanonce
● Thread keeps waiting after message is received
● Thread blocks infinitely

T r i c k y Part : H o w to imp lement t imeout?

Waiting

Setup alarm &
Put thread on wait
queue for port

Alarm Fires

Remove thread from port’s wait queue
& wake up thread

Deregister alarm
& wake up thread

ACK received

To make i t a l i t t l e easier
● You don’t have to implement congestion control
● Sending one packet at a time issufficient
● minimsg_send can block until corresponding ACK is received

But you can implement window sizes > 1 if you want to!
(and have the time…)

W her e to s ta r t
● Think about the state machine from earlier!
● Try to make connection setup and termination work first.
● Test with no loss and single-thread access

Test a l l the code!
● What happens if you send very largemessages?
● Can you handle a lot of messages?
● What if there is loss?
● If one party crashes the other one shouldn’t.
● What if multiple threads are sending/receiving from the sameport?

Test a l l the code!
In network.c:

double loss_rate = 0.0;

double duplication_rate = 0.0;

bool synthetic_network = false;

These change the behavior of the
network

You have to set this to true
for the other values to have
any effect!

Updat ing your project
Your project has been merged with the latest
code. Make sure everything compiles and
nothing is missing

New files:
minisocket, conn-network[1-3]

Good Luck

As always, if you need help, come to office hours
or post your questions on Piazza!

Questions?

