
Project 1
Non-Preemptive Multitasking

Kai Mast

Department of Computer Science

Cornell University

February 3rd, 2017

Excited about writing your own
Operating System?

● Project 1 is already released!

● It is due February 17th

● Currently only complies with GCC <= 5

● BUT, let us talk about C first!

Enumerated Types and Constants
● Enums are consecutive integers starting from 0
● unless you say otherwise…
● Not “advanced” just really important
● Do not use magic numbers in your code!

enum month_t { JANUARY,
 FEBRUARY,

 MARCH
};

Constants should be all in caps
const int MAX_PLAYERS = 10;

Pointer example

int x = 3;
int *p;
p = &x;
*p = 4;
int y = *p;
int *q = &y;
*q = *p + 1;
q = p;

x 3x 3

Pointer example

int x = 3;
int *p;
p = &x;
*p = 4;
int y = *p;
int *q = &y;
*q = *p + 1;
q = p;

x 3x 3

p ?

Be careful!
p has a random value at this point.

Pointer example

int x = 3;
int *p;
p = &x;
*p = 4;
int y = *p;
int *q = &y;
*q = *p + 1;
q = p;

x 3x 3

p

Pointer example

int x = 3;
int *p;
p = &x;
*p = 4;
int y = *p;
int *q = &y;
*q = *p + 1;
q = p;

x 4

p

Pointer example

int x = 3;
int *p;
p = &x;
*p = 4;
int y = *p;
int *q = &y;
*q = *p + 1;
q = p;

x 4

p

y 4

Pointer example

int x = 3;
int *p;
p = &x;
*p = 4;
int y = *p;
int *q = &y;
*q = *p + 1;
q = p;

x 4

p

y 4

q

Pointer example

int x = 3;
int *p;
p = &x;
*p = 4;
int y = *p;
int *q = &y;
*q = *p + 1;
q = p;

x 4

p

y 5

q

Pointer example

int x = 3;
int *p;
p = &x;
*p = 4;
int y = *p;
int *q = &y;
*q = *p + 1;
q = p;

x 4

p

y 5

q

q and p now point to the same address,
but the value only exists once.

Dynamic Memory Allocation

malloc(len)

free(ptr)

realloc(ptr, len)

“Give me a buffer of len bytes.”

“Change the size of what ptr points to to len.”

“I don’t need what ptr points to anymore.”

sizeof(x) “Give me the size of the type of x.”

What is the size of a type?

sizeof(x) is your friend!

Once again, don’t use magic numbers.
● int is not 4 bytes on every system
● You might change the type of a variable at some point in the future!

Don’t use sizeof on pointers.
● Sizeof will give you the size of the pointer
● Not what the pointer points to

Allocating arrays

const size_t NUM_ELEMENTS = 42;

e1l33t_type_t *ptr = NULL;

ptr = (e1l33t_type_t*) malloc(NUM_ELEMENTS * sizeof(*ptr));

This is the same as
sizeof(e1l33t_type_t)

Casting from generic
void* to our custom type

Pointers may point to single
elements or arrays.

What is wrong with this example?

int main (void) {
 int x = 0;
 for (int i = 10; i < 100; i++) {
 int *p = malloc(i * sizeof(*p));
 x = do_some_computation(x, i, p);
 }
 printf(“Answer %d\n”, x);
 return EXIT_SUCCESS;
}

Much Better ☺

int main (void) {
 int x = 0;
 for (int i = 10; i < 100; i++) {
 int *p = malloc(i * sizeof(*p));
 x = do_some_computation(x, i, p);
 free(p);
 }
 printf(“Answer %d\n”, x);
 return EXIT_SUCCESS;
}

int main (void) {
 int x = 0;
 for (int i = 10; i < 100; i++) {
 int *p = malloc(i * sizeof(*p));
 x = do_some_computation(x, i, p);
 free(p);
 }
 printf(“Answer %d\n”, x);
 return EXIT_SUCCESS;
}

Don’t do this.

char *str1 = malloc(1024 * sizeof(char));
char *str2 = str1;

free(str1);
free(str2);

Don’t do this either.

char *str = malloc(1024 * sizeof(char);
char *substr = str1[5];

free(substr);

Definitely don’t do this

char *str = “I love 4410”;
free(str);

str is not dynamically allocated
but on your stack!

Passing values by pointers

void set_to_three(int *i_ptr) {
 *i_ptr = 3;

}

int main() {
 int i = -1;
 set_to_three(&i);
 printf(“i is 3 now!”);
 return 0;
}

Passing values by pointers
...to pointers?

void my_alloc_function(void **p) {
 *p = malloc(14853);

}

int main() {
 void *p = NULL;
 my_alloc_function(&p);
 printf(“p is not NULL anymore!”);
 free(p);
 return 0;
} Unless malloc returns NULL,

which can happen ☺

Function pointers

int inc(int i) {return i+1;}
int dec(int i) {return i-1;}

int apply (int (*f)(int), int i){
return f(i);

}

int main() {
printf(“++: %i\n”, apply(inc, 10));
printf(“--: %i\n”, apply(dec, 10));
return 0;

}

And now the fun part...

Goals of Project 1

• A “gentle” introduction to C and PortOS

• Learn how threading works

• Implement synchronization primitives

• This is going to be a large project
→ bad coding style WILL bite you later

Project Overview

Queue Scheduling SemaphoresMinithreads

Queues
● Just a simple FIFO queue (with some additions)

● Prepend, append and dequeue must be O(1)
→ Use a linked list under the hood

“Delete the first instance of x in q”

“Place item in the front of q”
→ needed for peeking

“Apply f(p) to every element in q ”

queue_prepend(q,x)

queue_iterate(q,f,p)

queue_delete(q,x)

Minithreads

• What we call threads in PortOS

• Majority of the project

• Each thread runs a body procedure (body_proc)

• Will need a Thread Control Block
• Stack top pointer
• Stack base pointer
• Thread ID
• Anything else you want

Change the active stack

Useful functions for Thread
Management

Stack Creation

minithread_allocate_stack minithread_initialize_stack minithread_switch

Make sure to read
machineprimitives.h

minithread_switch

The stack pointer still points to the old thread’s stack, while
the new thread is stored somewhere else in memory.

We store the current thread’s state on the current stack, so it
is save to switch.

minithread_switch

Now we can move the stack pointer to the new thread’s stack
now.

minithread_switch

We now restore the thread’s state by reading it from the stack.

minithread_switch

Life of a minithread

Other thread calls
minithread_fork

Running Suspended

Thread calls
minithread_yield

Other thread calls
minithread_yield

Terminated

return is called
from within the

thread’s body_proc

Kernel Thread

Currently running
userspace threads

Scheduler
(decides which thread to run)

Kernel Thread
(Executes Privileged Tasks)

Other userspace threads
(Currently suspended)

The Scheduler in a Nutshell

How to implement the Scheduler

• Store threads that are waiting in a queue

• minithread_yield gives control to thread at the
head of the queue

• Expect scheduling to get more complicated in
Project 2

→ Code style matters

What if there are no Userspace
Threads?

• Operating Systems run “forever”

• Switch to an Idle Thread

– In our case that is just the kernel thread
– You can reuse the Stack from the host

process → no need to allocate a new stack

Being Non-Preemptive

• What happens when a user thread runs forever?

• In P1, we let it be!

• Assume that all threads are good and voluntarily
yield

• Threads yield by calling minithread_yield

An example for concurrent access.

• Imagine you at a store and need to go to the
bathroom.

• There is only a limited number of bathroom keys.

• You need to ask the clerk for a key.

• You are supposed to return the key after you went.

The clerk is a semaphore!

Initially the clerk has 2 keys

semaphore_init(clerk, 2);

Kristoff and Anna each request a key

semaphore_P(clerk);

semaphore_P(clerk);

Now the semaphore count is at 0

Other requests have to wait...

semaphore_P(clerk);

Sorry, I’m out of keys.

...until previous ones are done.

Sven, you can have the key now!

semaphore_V(clerk);

Life of a minithread (extended)

Other thread calls
minithread_fork

Running Suspended

Thread calls
minithread_yield

Other thread calls
minithread_yield

Terminated

return is called
from within the

thread’s body_proc

Stopped

RunningRunningRunning

Other thread calls
semaphore_V

Thread calls
semaphore_P

Putting it all together

• This bootstraps the system

• Use it to initialize queues, semaphores, global variables
or data structures

• You will add more in projects to come

void minithread_system_initialize

Files you need to change

• queue.c/h

• synch.c/h

• minithread.c/h

Comments are good, polling is not.

// Polling because CPUs like to be busy
while(!some_condition) {

check_condition();
}

If you comment your code,
we can give you partial
credit easier!

More Code Style Tips

• Avoid using duplicate code

• Remove ALL of your print statements and dead code before
submission!

• Comments should explain WHY not WHAT.

• Avoid using duplicate code

Testing

• We supply a few primitive tests

• Use it to see how minithreads work

• Sieve and buffer are good stress tests

• GDB is your friend!

Questions?

● As always, come to office hours and/or ask on Piazza.

● Projects always look easier as they are
→ Make sure you start early

(Sorry for all the Frozen references ☺)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Goals
	Project Overview
	Queues
	Minithreads
	Useful functions
	minithread_switch
	minithread_switch
	minithread_switch
	minithread_switch
	Life of a minithread
	Slide 34
	Scheduler
	Slide 36
	Being Non-Preemptive
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Bootstrapping
	Files you need to change
	Coding Style
	Slide 49
	Testing
	Slide 51

