
Persistent Storage

Persistent storage
just like memory, only different

Just like diamonds

last forever (?)

memory is volatile

very dense

1 TByte of storage fits here

...but much cheaper

1 TByte is less than $100 on Amazon

way cheaper than

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Named data

Controlled
Sharing

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O

Named data

Controlled
Sharing

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units

Use caching

Named data

Controlled
Sharing

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units

Use caching

Named data
Large capacity

Survives crashes

Shared across programs

Controlled
Sharing

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units

Use caching

Named data
Large capacity

Survives crashes

Shared across programs

Support files and directories with meaningful
names

Controlled
Sharing

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units

Use caching

Named data
Large capacity

Survives crashes

Shared across programs

Support files and directories with meaningful
names

Controlled
Sharing

Device may store data from
many users

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units

Use caching

Named data
Large capacity

Survives crashes

Shared across programs

Support files and directories with meaningful
names

Controlled
Sharing

Device may store data from
many users Include with files metadata for access control

Reliability

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units

Use caching

Named data
Large capacity

Survives crashes

Shared across programs

Support files and directories with meaningful
names

Controlled
Sharing

Device may store data from
many users Include with files metadata for access control

Reliability
Crash can occur during updates

Storage devices can fail

Flash memory wears out

How persistent storage
affects OS Design

Goal Physical Characteristics Design Implication

High
performance

Large cost to initiate I/O
Organize storage to access data in large
sequential units

Use caching

Named data
Large capacity

Survives crashes

Shared across programs

Support files and directories with meaningful
names

Controlled
Sharing

Device may store data from
many users Include with files metadata for access control

Reliability
Crash can occur during updates

Storage devices can fail

Flash memory wears out

Use transactions

Use redundancy to detect and correct failures

Migrate data to even the wear

How persistent storage
affects applications

Example: Word processor with auto-save feature

If file is large and developer is naive

poor performance

may have to overwrite entire file to write a few bytes!

clever doc format may transform updates in appends

corrupt file

crash while overwriting file

lost file

crash while copying new file to old file location

The File System
abstraction

Presents applications with persistent, named data

Two main components:

files

directories

The File

A file is a named collection of data.

A file has two parts

data – what a user or application puts in it

array of untyped bytes (in MacOS HFS, multiple streams per
file)

metadata – information added and managed by the OS

size, owner, security info, modification time

The Directory

The directory provides names for files

a list of human readable names

a mapping from each name to a specific underlying file
or directory (hard link)

a soft link is instead a mapping from a file name to
another file name

alias: a soft link that continues to remain valid when the
(path of) the target file name changes

Path and Volume

path: string that identifies a file or directory

absolute (if it stats with “/”, the root directory)

relative (w.r.t. the current working directory)

volume: a collection of physical storage resources
forming a logical storage device

Mount

Point

Mount

mount: allows multiple file systems on multiple
volumes to form a single logical hierarchy

a mapping from some path in existing file system to
the root directory of the mounted file system

USB

Volumes

/

Bin

Home

Lorenzo

Lorenzo’s

disk

Princess

Bride

Movies

/

Backup

USB Volume

File system API
Creating and deleting files

create() creates 1) a new file with some metadata and 2) a name for the file in
a directory

link() creates a hard link–a new name for the same underlying file

unlink() removes a name for a file from its directory. If last link, file itself
and resources it held are deleted

Open and close

open() provides caller with a file descriptor to refer to file

permissions checked at open() time (a capability!)

creates per-file data structure, referred to by file descriptor

file ID, R/W permission, pointer to process position in file

close() releases data structure

File access

read(), write(), seek()

but can use mmap() to create a mapping between region of file and region of memory

fsync() does not return until data is written to persistent storage

File systems:

What’s so hard?

Just map keys to values !
block numbers

on a device

file name

& offset

File systems:

What’s so hard?

Just map keys to values !

Not so fast!

Performance

spatial locality

Flexibility

must handle diverse workloads

Reliability

must handle OS crashes and HW malfunctions

block numbers

on a device

file name

& offset

Implementation:

key ideas

Directories

file name file number

Index structures

file number block

Free space maps

find a free block; actually, find a free block nearby

Locality heuristics

policies enabled by above mechanisms

group directories

make writes sequential

defragment

Directory
A file that contains a collection of mapping from file
name to file number

To look up a file, find the directory that contains the
mapping to the file number

To find that directory, find the parent directory that
contains the mapping to that directory’s file number...

Good news: root directory has well-known number (2)

Documents
Music

Project1
griso.jpg

45920022
63092178
57294492
36271008

/Users/lorenzo

Find file /Users/lorenzo/griso.jpg

Looking up a file

file 2

“/” bin 1490254

usr
Users 40112318

7230581

chiara 873092
maria
lorenzo 5620147

6639112file 40112318

“/Users”

file 5620147

“/Users/lorenzo”

Documents

Project1
griso.jpg

45920022
63092178
57294492
36271008

Music

file 36271008

“/Users/lorenzo/griso.jpg”

Finding data

Index structure provides a way to locate each of
the file’s blocks

usually implemented as a tree for scalability

Free space map provides a way to allocate free
blocks

often implemented as a bitmap

Locality heuristics group data to maximize access
performance

Case studies
FAT late 70s; Microsoft

key idea: linked list

Today: flash sticks

Unix FFS mid 80’s

key idea: tree-based multi-level index

Today: Linux ext2 and ext3

NTFS early 1990s; Microsoft.

Key idea: variable size extents instead of fixed size blocks

Today: Windows 7, Linux ext4, Apple HFS

ZFS early 2000; open source.

Key idea: copy on write (COW)

FAT File system
 Microsoft, late 70s

File Allocation Table (FAT)

started with MSDOS

in FAT-32, supports 228 blocks and files of 232-1 bytes

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Index Structures

File Allocation Table (FAT)

array of 32-bit entries

file represented as a linked list
of FAT entries

file # = index of first FAT entry

Free space map

If data block i is free,
then FAT[i] = 0

find free blocks by
scanning MFT

Locality heuristics

As simple as next fit:

scan sequentially from
last allocated entry and
return next free entry

Can be improved through
defragmentation

FAT File system
 Microsoft, late 70s

File Allocation Table (FAT)

started with MSDOS

in FAT-32, supports 228 blocks and files of 232-1 bytes

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Advantages

simple!

used in many
USB flash keys

used even within
MS Word!

Disadvantages

Poor locality

next fit? seriously?

Poor random access

needs sequential traversal

Limited access control

no file owner or group ID metadata

any user can read/write any file

No support for hard links

metadata stored in directory entry

Volume and file size are limited

FAT entry is 32 bits, but top 4 are
reserved

no more than 228 blocks

with 4kB blocks, at most 1TB volume

file no bigger than 4GB

No support for transactional updates

FFS: Fast File System
Unix, 80s

Smart index structure

multilevel index allows to locate all blocks of a file

efficient for both large and small files

Smart locality heuristics

block group placement

optimizes placement for when a file data and metadata, and
other files within same directory, are accessed together

reserved space

gives up about 10% of storage to allow flexibility needed to
achieve locality

File structure
Each file is a fixed, asymmetric tree, with fixed size data
blocks (e.g. 4KB) as its leaves

The root of the tree is the file’s inode

contains file’s metadata

owner, permissions (rwx for owner, group other), directory?, etc

setuid: file is always executed with owner’s permission

add flexibility but can be dangerous

setgid: like setuid for groups

contains a set of pointers

typically 15

first 12 point to data block

last three point to intermediate blocks, themselves containing pointers

13: indirect pointer

14: double indirect pointer

15: triple indirect pointer

Multilevel index
Inode Array

Inode

File

metadata

Data
blocks

} 12 x
4KB =
48KB

indirect block

 contains pointers to data blocks

 4 Bytes entries
}1K x 4KB

= 4MB

double indirect block

 contains pointers to indirect blocks

} 1K x 1k x
4KB =
4GB

triple indirect block

 contains pointers to double indirect blocks } 1K x

1k x

1k x

4KB =
4TB

at known
location on disk

file number =
inode number =
index in the
array

Multilevel index:
key ideas

Tree structure

efficient in finding blocks

High degree

efficient in sequential reads

once an indirect block is read,
can read 100s of data block

Fixed structure

simple to implement

Asymmetric

supports efficiently files big
and small

File

metadata

Inode

array

Data

blocks

Example: variations
on the FFS theme

In BigFS an inode stores

4kb blocks, 8 byte pointers

12 direct pointers

1 indirect pointer

1 double indirect

1 triple indirect

1 quadruple indirect

What is the maximum size of a file?

File

metadata

Inode

array

Data

blocks

Through direct pointers

12 x 4kb = 48KB

Indirect pointer

512 x 4kb = 2MB

Double indirect pointer

5122 x 4kb = 1GB

Triple indirect pointer

5123 x 4kb = 512GB
Quadruple indirect pointer

5124 x 4kb = 256TB
Total = (256 + .5 + 10-6 + 2 x 10-9 + 4.8 x 10-11) ≈ 256.5 TB

Free space management

Easy

a bitmap with one bit per storage block

bitmap location fixed at formatting time

i-th bit indicates whether i-th block is used or free

Locality heuristics:
block group placement

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups

Place file in block group

when a new file is created, FFS looks for inodes in
the same block as the file’s directory

when a new directory is created, FFS palces it in a
different block from the parent’s directory

Place data blocks

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

Locality heuristics:
block group placement

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups

Place file in block group

when a new file is created, FFS looks for inodes in
the same block as the file’s directory

when a new directory is created, FFS palces it in a
different block from the parent’s directory

Place data blocks

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

Start of

block group

In use Free

Locality heuristics:
block group placement

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups

Place file in block group

when a new file is created, FFS looks for inodes in
the same block as the file’s directory

when a new directory is created, FFS palces it in a
different block from the parent’s directory

Place data blocks

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

Start of

block group

Small file

Locality heuristics:
block group placement

Divide disk in block groups

sets of nearby tracks

Distribute metadata

old design: free space bitmap and inode map in a
single contiguous region

lots of seeks when going from reading metadata to
reading data

FFS: distribute free space bitmap and inode array
among block groups

Place file in block group

when a new file is created, FFS looks for inodes in
the same block as the file’s directory

when a new directory is created, FFS palces it in a
different block from the parent’s directory

Place data blocks

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

Start of

block group

Large file

Locality heuristics:
reserved space

When a disk is full, hard to
optimize locality

file may end up scattered
through disk

FFS presents applications with
a smaller disk

about 10% smaller

user write that encroaches on
reserved space fails

super user still able to allocate
inodes to clean things upFre

e
spa

ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p

NTFS: flexible tree

with extents Microsoft, 93s

Index structure: extents and flexible tree

extents

track ranges of contiguous blocks rather than single blocks

flexible tree

file represented by variable depth tree

large file with few extents can be stored in a shallow tree

MFT (Master File Table)

array of 1 KB records holding the trees’ roots

similar to inode table (but 1 file can have multiple MFT entries)

each record stores sequence of variable-sized attribute
records

both data and metadata are attributes

attributes can be resident (fits in the record) or nonresident

Example of NTFS
index structure

Master

File Table

MFT Record

Std. Info File Name Data (nonresident) free

Da
ta

 E
xt

en
t

+

+

Da
ta

 E
xt

en
t

Start

Length

Start + Length

Start

Length

Start + Length

 file creation time

access time

owner ID

security specifier

file name and number of
parent directory

one file name attribute per
hard link

Basic file with two data extents

Example of NTFS
index structure

Master

File Table

MFT Record

Std. Info File Name Data (resident) free

 file creation time

access time

owner ID

security specifier

file name and number of
parent directory

one file name attribute per
hard link

Small file where data is resident

Example of NTFS
index structure

Master

File Table MFT Record

(part 1)

Std. Info Attr. list File name free
name

name

data

Std. Info Data (nonresident) free

File name

+

Da
ta

 E
xt

en
t

+

Da
ta

 E
xt

en
t

+

Da
ta

 E
xt

en
t

MFT Record

(part 2)

A file’s attributes can span multiple records

Small, normal, and big files
Master File Table

Std. Info ... Data (resident)

Std. Info ... Data (nonresident)

Std. Info Attr. list ... Data (nonresident)

Std. Info Data (nonresident)

Std. Info Data (nonresident)

Std. Info Data (nonresident)

...and for really huge (or
really badly fragmented)
files, even the attribute list
can become nonresident!

atribute list split in
separate extents

Metadata files
NTFS stores most metadata in ordinary files with well-known numbers

5 (root directory); 6 (free space bitmap); 8 (list of bad blocks)

$Secure (file no. 9)

stores access control list for every file

indexed by fixed-length key

files store appropriate key in their MFT record

$MFT (file no. 0)

stores Master File Table

to read MFT, need to know first entry of MFT

a pointer to it stored in first sector of NTFS

MFT can start small and grow dynamically

To avoid fragmentation, part of start of volume reserved to MFT expansion

when full, halves reserved MFT area

Locality heuristics

Best fit

finds smallest region large enough to fit file

NTFS caches allocation status for a small area of disk

writes that occur together in time get clustered together

SetEnfOfFile() lets specify expected length of file at
creation

COW File Systems
(copy-on-write)

Data and metadata not updated in place, but
written to new location

transforms random writes into sequential writes

Adding a block
to a file

free space bitmap

Inode

Traditional

indirect

block

New
data
block

COW

free space bitmap

Inode

indirect

block

New
data
block

Update
Inode

Update
indirect
block

Update
bitmap

COW File Systems
Why?

Small writes are expensive

Small writes are expensive on RAID

expensive to update a single block (4 disk I/O) but efficient
for entire stripes

Caches filter reads

Widespread adoption of flash storage

wear leveling, which spreads writes across all cells, important to
maximize flash life

COW techniques used to virtualize block addresses and redirect
writes to cleared erasure blocks

Large storage capacities enable versioning

versioning is easy with COW!

The core idea
Inode
Array

Indirect
Blocks

Data

Blocks

Fixed
Location Anywhere

Traditional

Fixed
Location Anywhere

COW

The core idea
Inode
Array

Indirect
Blocks

Data

Blocks

Fixed
Location Anywhere

Traditional

Fixed
Location Anywhere

COW

The core idea
Inode
Array

Indirect
Blocks

Data

Blocks

Fixed
Location Anywhere

Traditional

Fixed
Location Anywhere

COW

The core idea
Inode
Array

Indirect
Blocks

Data

Blocks

Fixed
Location Anywhere

Traditional

Fixed
Location Anywhere

COW

The core idea
Inode
Array

Indirect
Blocks

Data

Blocks

Fixed
Location Anywhere

Traditional

Fixed
Location Anywhere

COW

File access in FFS

What it takes to read /Users/lorenzo/wisdom.txt

Read Inode for “/” (root) from a fixed location

Read first data block for root

Read Inode for /Users

Read first data block of /Users

Read Inode for /Users/lorenzo

Read first data block for /Users/lorenzo

Read Inode for /Users/lorenzo/wisdom.txt

Read data blocks for /Users/lorenzo/wisdom.txt

“A cache is a man’s best friend”

Caching and consistency
File systems maintain many data structures

bitmap of free blocks

bitmap of inodes

directories

inodes

data blocks

Data structures cached for performance

works great for read operations...

...but what about writes?

Solutions:

write-back caches: delay writes for higher performance at the cost
of potential inconsistencies

write through caches: write synchronously but poor performance

do we get consistency at least?

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

owner: lorenzo

permissions: read-only

size: 1

pointer: 4

pointer: null

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner: lorenzo

permissions: read-only

size: 1

pointer: 4

pointer: null

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

update inode

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner: lorenzo

permissions: read-only

size: 2

pointer: 4

pointer: 5

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

update inode

update data bitmap

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner: lorenzo

permissions: read-only

size: 2

pointer: 4

pointer: 5

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

update inode

update data bitmap

1

What if a crash or power outage occurs between writes?

What if only a single
write succeeds?

Just the data block (D2) is written to disk

data is written, but no way to get to it - in fact, D2 still
appears as a free block

as if write never occurred

Just the updated inode (Iv2) is written to disk

if we follow the pointer, we read garbage

file system inconsistency: data bitmap says block is free, while
inode says it is used. Must be fixed

Just the updated bitmap is written to disk

file system inconsistency: data bitmap says data block is used,
but no inode points to it.

No idea which file the data block was to belong to!

What if two writes
succeed?

Inode and data bitmap updates succeed

file system is consistent

but reading new block returns garbage

Inode and data block updates succeed

file system inconsistency. Must be fixed

Data bitmap and data block succeed

file system inconsistency

no idea to which file data block should belong to!

The Consistent Update
problem

Several file systems operations update multiple
data structures

Move a file between directories

delete file from old directory

add file to new directory

Create new file

update inode bitmap and data bitmap

write new inode

add new file to directory file

Even with write through we have a problem!

Ad hoc solutions:
metadata consistency

Synchronous write through for metadata

Updates performed in a specific order

File create

write data block

update inode

update inode bitmap

update data bitmap

update directory

if directory grew: 1) update data bitmap; 2) update directory inode

On file crash

fsck

scans entire disk for inconsistencies, starting with superblock

scans inodes, indirect blocks, double indirect, etc tu understand which blocks are allocated

uses scan results to update bitmaps

file created but not in any directory: delete file

Issues

need to get ad-hoc reasoning exactly right

synchronous writes lead to poor performance

recovery is sloooow: must scan entire disk

Ad hoc solutions:
user data consistency
Asynchronous write back

forced after a fixed interval (e.g. 30 sec)

can lose up to 30 sec of work

Rely on metadata consistency

updating a file in vi

delete old file

write new file

Ad hoc solutions:
user data consistency
Asynchronous write back

forced after a fixed interval (e.g. 30 sec)

can lose up to 30 sec of work

Rely on metadata consistency

updating a file in vi

write new version to temp

move old version to other temp

move new version to real file

unlink old version

if crash, look in temp area and send “there may be a problem” email to user

Ad hoc solutions:
implementation tricks
Block I/O Barriers

allow a block device user to enforce ordering among I/O
issued to that block device

client need not block waiting for write to complete

instead, OS builds a dependency graph

no write goes to disk unless all writes it depends on have

A principled approach:
Transactions

Group together actions so that they are

Atomic: either all happen or none

Consistent: maintain invariants

Isolated: serializable (schedule in which transactions occur
is equivalent to transactions executing sequentially

Durable: once completed, effects are persistent

Critical sections are ACI, but not Durable

Transaction can have two outcomes:

Commit: transaction becomes durable

Abort: transaction never happened

may require appropriate rollback

Journaling
(write ahead logging)
Turns multiple disk updates into a single disk write

“write ahead” a short note to a “log”, specifying
changes about to be made to the FS data structures

if a crash occurs while updating the FS data structure,
consult log to determine what to do

no need to scan entire disk!

Data Jounaling:

an example

We start with

We want to add a new block to the file

Three easy steps

Write to the log 5 blocks:

write each record to a block, so it is atomic

Write the blocks for Iv2, B2, D2 to the FS proper

Mark the transaction free in the journal

What happens if we crash before the log is updated?

no commit, nothing to disk - ignore changes!

What happens if we crash after the log is updated?

replay changes in log back to disk

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

TxBegin | Iv2 | B2 | D2 | TxEnd

Journaling and
Write Order

Issuing the 5 writes to the log
sequentially is slow

Issue at once, and transform in a single sequential
write

Problem: disk can schedule writes out of order

first write TxBegin, Iv2, B2, TxEnd

then write D2

TxBegin | Iv2 | B2 | D2 | TxEnd

Disk loses power

Log contains:

syntactically, transaction log looks fine, even with nonsense in
place of D2!

TxBegin | Iv2 | B2 | ?? | TxEnd

Set a Barrier before TxEnd

TxEnd must block until data on disk

What about
performance?

All data is written twice... surely it is horrible?

100 1KB random writes vs. log + write-back

Direct write: 100 x Trw ≈ 100 x 10ms ≈ 1s

Pessimistic log

100 x Tsw + 100 x Trw ≈ 100/(50x103) + 1s = 2ms + 1s

Realistic (write-back performed in the background)

more opportunities for disk scheduling

100 random writes may take less time than in direct write
case

Back to

The early 90s
Growing memory sizes

file systems can afford large block caches

most reads can be satisfied from block cache

performance dominated by write performance

Growing gap in random vs sequential I/O performance

transfer bandwidth increases 50%-100% per year

seek and rotational delay decrease by 5%-10% per year

using disks sequentially is a big win

Existing file system perform poorly on many workloads

6 writes to create a new file of 1 block

new inode | inode bitmap | directory data block that includes file |
directory inode (if necessary) | new data block storing content of new file |
data bitmap

lots of short seeks

Log structured
file systems

Use disk as a log

buffer all updates (including metadata!) into a segment

when segment is full, write to disk in a long sequential
transfer to unused part of disk

Virtually no seeks

much improved disk throughput

But how does it work?

suppose we want to add a new block to a 0-sized file

LFS paces both data block and inode in its in-memory
segment

D I|
Fine.

But how do we find the inode?

Finding inodes

in UFS, just index into inode array
Super Block | Inodes | Data blocks

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Super Block Inodes Data blocks

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 ...

512 bytes/block

128 bytes/inode

To find address inode 11:

 addr(b1)+ #inode x
 size(inode)

Same in FFS (but Inodes are at divided (at
known locations) between block groups

Finding inodes in LFS

inode map: a table indicating where each inode is
on disk

inode map blocks written as part of the segment

... so need not seek to write to imap

but how do we find the inode map?

table in a fixed checkpoint region

updated periodically (every 30 seconds)

The disk then looks like

CR freeseg1 seg2 seg3 free

LFS vs UFS
inode

directory

data

inode map

Log

Unix File System

Log-structured File System

Blocks written to
create two 1-block files:
dir1/file1 and dir2/file2
in UFS and LFS

dir1

dir1 dir2

dir2

file1 file2

file1 file2

Reading from disk in LFS

Suppose nothing in memory...

read checkpoint region

from it, read and cache entire inode map

from now on, everything as usual

read inode

use inode’s pointers to get to data blocks

When the imap is cached, LFS reads involve
virtually the same work as reads in traditional file
systemsmodulo an

imap lookup

Garbage collection
As old blocks of files are replaced by new, segment in log
become fragmented

Cleaning used to produce contiguous space on which to write

compact M fragmented segments into N new segments, newly
written to the log

free old M segments

Cleaning mechanism:

How can LFS tell which segment blocks are live and which dead?

Cleaning policy

How often should the cleaner run?

How should the cleaner pick segments?

Segment summary block

For each data block, stores

the file it belongs (inode#)

the offset (block#) within file

During cleaning

allows to determine whether data block D is live

use inode# to find in imap where inode is currently on disk

read inode (if not already in memory)

check whether pointer for block block# refers to D’s
address

allows to update file’s inode with correct pointer if D is
live and compacted to new segment

Which segments to
clean, and when?

When?

periodically

when you have nothing better to do

when disk is full

Which segments?

utilization: how much it is gained by cleaning

segment usage table tracks how much live data in segment

age: how likely is the segment to change soon

better to wait on cleaning a hot block

Crash recovery
The journal is the file system!

On recovery

read checkpoint region

may be out of date (written periodically)

may be corrupted

1) two CR blocks at opposite ends of disk / 2) timestamp blocks before and
after CR

use CR with latest consistent timestamp blocks

roll forward

start from where checkpoint says log ends

read through next segments to find valid updates not
recorded in checkpoint

when a new inode is found, update imap

when a data block is found that belongs to no inode, ignore

Towards

Distributed Systems

What is a distributed
system?

The Client/Server
paradigm

Server

offers some service (e.g., file server)

may exist in more than one node

Client

uses the service

The basic pattern

clients binds (i.e., connects) to the server

client sends request (with paramenters) to perform services

server returns response

How to communicate?

Messages

very flexible

leave programmers to worry about

message format

how to pack and unpack messages

how to decode at the server

error handling

Procedure calls

an old friend!

server is a module that exports a set of procedures

Remote Procedure Call

Birrell & Nelson, Xerox PARC, ‘80s

Procedure calls as basis for distributed communication

How can we make RPC look like LPC?

how can we make it invisible to the programmer?

what are the semntics of parameter passing?

how do we locate the server (binding)?

how do we support heterogeneity (OS, architecture, programming
language)?

Three-part solution

user program (client or server)

set of stub procedures

runtime support

Building a server

Define server’s interface in an interface definition
language (IDL)

specifies names, paramenters, and types for all server
procedures that clients can invoke

Stubs compiler

reads IDL

produces a client and a server stub for each server
procedure

manage all details of remote client-server communication

Server and client developers link their code to
respective stub

RPC Stubs

Looks to client as callable
server procedure

Client program thinks it is
calling the server

Client-side stub
Server program thinks it is
called by client

foo actually called by
server’s stub

Server-side stub

call foo(x,y)client

program

client

stub

server

program

server

stubproc foo(a,b)

proc foo(a,b)
begin foo(a,b)
end foo(a,b)

call foo(x,y)

call foo call foo

stubs communicate
with one another

RPC Stubs
client

program

client

stub

server

program

server

stub

call foo call foo

RPC

runtime

call foo(x,y)
client makes
local call to
stub proc.

proc foo(a,b)
begin foo(a,b)
end foo(a,b)

server
called by
its stub

proc foo(a,b)
stub builds
msg packet,

inserts params

runtime sends msg
to remote node

runtime receives
msg and calls stub

call foo(x,y)
stub unpacks
params and
makes call

RPC

runtime

send msg msg received

Call

RPC Stubs
client

program

client

stub

server

program

server

stub

return return

RPC

runtime

call foo(x,y) client
continues

proc foo(a,b)
begin foo(a,b)
end foo(a,b)

server
procedure
returns

proc foo(a,b)
stub unpacks
msg, returns

to caller

runtime receives
msg, calls stub

runtime responds to
original message

call foo(x,y)
stub builds

result msg with
output args

RPC

runtime

msg received send msg

Return

RPC Binding

Server at startup exports its interface

identifies itself to a network name server

tells local runtime address of the dispatch routine that will
perform requested services

Client, before issuing calls, imports server

RPC runtime looks up service though network name server

contacts server to set up a connection

Import and export are explicit calls in the code

RPC Marshalling
Packing of procedure parameters in a message packet

notion close to pickling (Python), serialization (Java)

RPC stubs call type-specific procedures to marshal/
unmarshal call parameters

client

stub proc foo(a,b)

marshals
parameters
into call
packet

send msg

call foo

server

stubproc foo(a,b)

unmarshals
parameter to
call server’s
procedure

send msg

call foo

RPC Marshalling
Packing of procedure parameters in a message packet

notion close to pickling (Python), serialization (Java)

RPC stubs call type-specific procedures to marshal/
unmarshal call parameters

Roles reverse on return

server stub,marshals return parameters; client stub unmarshals

client

stub proc foo(a,b)

marshals
parameters
into call
packet

send msg

call foo

server

stubproc foo(a,b)

unmarshals
parameter to
call server’s
procedure

send msg

call foo

