
Persistent Storage



Persistent storage 
just like memory, only different

Just like diamonds

last forever (?)


memory is volatile


very dense

1 TByte of storage fits here


...but much cheaper

1 TByte is less than $100 on Amazon


way cheaper than 
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Goal Physical Characteristics Design Implication

High 
performance

Large cost to initiate I/O
Organize storage to access data in large 
sequential units

Use caching

Named data
Large capacity


Survives crashes

Shared across programs

Support files and directories with meaningful 
names

Controlled 
Sharing

Device may store data from 
many users Include with files metadata for access control

Reliability
Crash can occur during updates


Storage devices can fail

Flash memory wears out

Use transactions

Use redundancy to detect and correct failures


Migrate data to even the wear



How persistent storage 
affects applications

Example: Word processor with auto-save feature


If file is large and developer is naive

poor performance


may have to overwrite entire file to write a few bytes!

clever doc format may transform updates in appends


corrupt file

crash while overwriting file


lost file

crash while copying new file to old file location



The File System 
abstraction

Presents applications with persistent, named data


Two main components: 

files 

directories



The File

A file is a named collection of data. 


A file has two parts

data – what a user or application puts in it


array of untyped bytes (in MacOS HFS, multiple streams per 
file)


metadata – information added and managed by the OS

size, owner, security info, modification time



The Directory

The directory provides names for files

a list of human readable names

a mapping from each name to a specific underlying file 
or directory (hard link)

a soft link is instead a mapping from a file name to 
another file name


alias: a soft link that continues to remain valid when the 
(path of)  the target file name changes



Path and Volume

path: string that identifies a file or directory

absolute (if it stats with “/”, the root directory)

relative (w.r.t. the current working directory)


volume: a collection of physical storage resources 
forming a logical storage device



Mount

Point

Mount

mount: allows multiple file systems on multiple 
volumes to form a single logical hierarchy


a mapping from some path in existing file system to 
the root directory of the mounted file system

USB

Volumes

/

Bin

Home

Lorenzo

Lorenzo’s

disk

Princess

Bride

Movies

/

Backup

USB Volume



File system API
Creating and deleting files


create() creates 1) a new file with some metadata and 2) a name for the file in 
a directory

link() creates a hard link–a new name for the same underlying file

unlink() removes a name for a file from its directory. If last link, file itself 
and resources it held are deleted


Open and close

open() provides caller with a file descriptor to refer to file


permissions checked at open() time (a capability!)

creates per-file data structure, referred to by file descriptor


file ID, R/W permission, pointer to process position in file


close() releases data structure


File access

read(), write(), seek() 

but can use mmap() to create a mapping between region of file and region of memory


fsync() does not return until data is written to persistent storage
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File systems: 

What’s so hard?

Just map    keys    to     values !


Not so fast!

Performance


spatial locality


Flexibility

must handle diverse workloads


Reliability

must handle OS crashes and HW malfunctions

block numbers 

on a device

file name 

& offset



Implementation: 

key ideas

Directories

file name       file number  


Index structures

file number       block


Free space maps

find a free block; actually, find a free block nearby


Locality heuristics

policies enabled by above mechanisms


group directories

make writes sequential

defragment



Directory
A file that contains a collection of mapping from file 
name to file number


To look up a file, find the directory that contains the 
mapping to the file number


To find that directory, find the parent directory that 
contains the mapping to that directory’s file number...


Good news: root directory has well-known number (2) 

Documents
Music

Project1
griso.jpg

45920022
63092178
57294492
36271008

/Users/lorenzo



Find file /Users/lorenzo/griso.jpg

Looking up a file

file 2

“/” bin 1490254

usr
Users 40112318

7230581

chiara 873092
maria
lorenzo 5620147

6639112file 40112318

“/Users”

file 5620147

“/Users/lorenzo”

Documents

Project1
griso.jpg

45920022
63092178
57294492
36271008

Music

file 36271008

“/Users/lorenzo/griso.jpg”



Finding data

Index structure provides a way to locate each of 
the file’s blocks


usually implemented as a tree for scalability


Free space map provides a way to allocate free 
blocks


often implemented as a bitmap


Locality heuristics group data to maximize access 
performance



Case studies
FAT late 70s; Microsoft


key idea: linked list

Today:  flash sticks


Unix FFS mid 80’s

key idea: tree-based multi-level index

Today: Linux ext2 and ext3


NTFS early 1990s; Microsoft.

Key idea: variable size extents instead of fixed size blocks

Today: Windows 7, Linux ext4, Apple HFS


ZFS early 2000; open source.

Key idea: copy on write (COW)



FAT File system 
 Microsoft, late 70s

File Allocation Table (FAT)

started with MSDOS

in FAT-32, supports 228 blocks and files of 232-1 bytes

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Index Structures

File Allocation Table (FAT)


array of 32-bit entries

file represented as a linked list 
of FAT entries

file # = index of first FAT entry 

Free space map

If data block i is free, 
then FAT[i] = 0

find free blocks by 
scanning MFT

Locality heuristics

As simple as next fit:


scan sequentially from 
last allocated entry and 
return next free entry


Can be improved through 
defragmentation



FAT File system 
 Microsoft, late 70s

File Allocation Table (FAT)

started with MSDOS

in FAT-32, supports 228 blocks and files of 232-1 bytes

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Advantages

simple!


used in many 
USB flash keys

used even within 
MS Word!

Disadvantages

Poor locality


next fit? seriously?

Poor random access


needs sequential traversal

Limited access control


no file owner or group ID metadata

any user can read/write any file


No support for hard links

metadata stored in directory entry


Volume and file size are limited

FAT entry is 32 bits, but top 4 are 
reserved

no more than 228 blocks

with 4kB blocks, at most 1TB volume

file no bigger than 4GB


No support for transactional updates



FFS: Fast File System 
Unix, 80s

Smart index structure

multilevel index allows to locate all blocks of a file


efficient for both large and small files


Smart locality heuristics

block group placement


optimizes placement for when a file data and metadata, and 
other files within same directory, are accessed together


reserved space

gives up about 10% of storage to allow flexibility needed to 
achieve locality



File structure
Each file is a fixed, asymmetric tree, with fixed size data 
blocks (e.g. 4KB) as its leaves


The root of the tree is the file’s inode

contains file’s metadata


owner, permissions (rwx for owner, group other), directory?, etc 

setuid: file is always executed with owner’s permission


add flexibility but can be dangerous


setgid: like setuid for groups


contains a set of pointers

typically 15

first 12 point to data block

last three point to intermediate blocks, themselves containing pointers


13: indirect pointer


14: double indirect pointer


15: triple indirect pointer



Multilevel index 
Inode Array

Inode

File 

metadata

Data 
blocks

} 12 x 
4KB = 
48KB

indirect block

  contains pointers to data blocks

 4 Bytes entries
}1K x 4KB 

= 4MB

double indirect block

  contains pointers to indirect blocks

} 1K x 1k x 
4KB = 
4GB

triple indirect block

  contains pointers to double indirect blocks } 1K x 


1k x 

1k x

4KB = 
4TB

at known 
location on disk


file number = 
inode number = 
index in the 
array



Multilevel index:  
key ideas

Tree structure

efficient in finding blocks


High degree

efficient in sequential reads


once an indirect block is read, 
can read 100s of data block


Fixed structure

simple to implement


Asymmetric

supports efficiently files big 
and small

File 

metadata

Inode

array

Data

blocks



Example: variations  
on the FFS theme

In BigFS an inode stores


4kb blocks, 8 byte pointers

12 direct pointers

1 indirect pointer

1 double indirect

1 triple indirect

1 quadruple indirect


What is the maximum size of a file?

File 

metadata

Inode

array

Data

blocks

Through direct pointers


12 x 4kb = 48KB

Indirect pointer


512 x 4kb = 2MB

Double indirect pointer


5122 x 4kb = 1GB

Triple indirect pointer


5123 x 4kb = 512GB
Quadruple indirect pointer


5124 x 4kb = 256TB
Total = (256 + .5 + 10-6 + 2 x 10-9 + 4.8 x 10-11) ≈ 256.5 TB



Free space management

Easy

a bitmap with one bit per storage block

bitmap location fixed at formatting time

i-th bit indicates whether i-th block is used or free



Locality heuristics: 
block group placement

Divide disk in block groups

sets of nearby tracks


Distribute metadata

old design: free space bitmap  and inode map in a 
single contiguous region


lots of seeks when going from reading metadata to 
reading data


FFS: distribute free space bitmap and inode array 
among block groups


Place file in block group

when a new file is created, FFS looks for inodes in 
the same block as the file’s directory

when a new directory is created, FFS palces it in a 
different block from the parent’s directory


Place data blocks

first free heuristics

trade short term for long term locality

Fre
e

spa
ce

bit
ma

p

In
od

es

Block group 0

Block group 1

Block group 2

Free
space

bitmap

Inodes

In
od

es

Free space
bit

ma
p

Data
blocks

in

/a
/d
/b/c

Data
blocks

in

/b
/a/g

/z

for
files

for
files

Data
blocks

in

for
files

/d/q
/c

/a/p
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Locality heuristics: 
reserved space

When a disk is full, hard to 
optimize locality


file may end up scattered 
through disk


FFS presents applications with 
a smaller disk


about 10% smaller

user write that encroaches on 
reserved space fails

super user still able to allocate 
inodes to clean things upFre
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NTFS: flexible tree 

with extents       Microsoft, 93s

Index structure: extents and flexible tree

extents


track ranges of contiguous blocks rather than single blocks


flexible tree

file represented by variable depth tree


large file with few extents can be stored in a shallow tree


MFT (Master File Table)

array of 1 KB records holding the trees’ roots


similar to inode table (but 1 file can have multiple MFT entries)

each record stores sequence of variable-sized attribute 
records


both data and metadata are attributes


attributes can be resident (fits in the record) or nonresident



Example of NTFS  
index structure

Master 

File Table

MFT Record

Std. Info File Name Data (nonresident) free

Da
ta

 E
xt

en
t

+

+

Da
ta

 E
xt

en
t

Start

Length

Start + Length

Start

Length

Start + Length

  file creation time

access time

owner ID

security specifier

file name and number of 
parent directory

one file name attribute per 
hard link

Basic file with two data extents



Example of NTFS  
index structure

Master 

File Table

MFT Record

Std. Info File Name Data (resident) free

  file creation time

access time

owner ID

security specifier

file name and number of 
parent directory

one file name attribute per 
hard link

Small file where data is resident



Example of NTFS  
index structure

Master 

File Table MFT Record


(part 1)

Std. Info Attr. list File name free
name

name

data

Std. Info Data (nonresident) free

File name

+

Da
ta

 E
xt

en
t

+

Da
ta

 E
xt

en
t

+

Da
ta

 E
xt

en
t

MFT Record

(part 2)

A file’s attributes can span multiple records



Small, normal, and big files
Master File Table

Std. Info ... Data (resident)

Std. Info ... Data (nonresident)

Std. Info Attr. list ... Data (nonresident)

Std. Info Data (nonresident)

Std. Info Data (nonresident)

Std. Info Data (nonresident)

...and for really huge (or 
really badly fragmented) 
files, even the attribute list 
can become nonresident!

atribute list split in 
separate extents



Metadata files
NTFS stores most metadata in ordinary files with well-known numbers


5 (root directory); 6 (free space bitmap); 8 (list of bad blocks)


$Secure (file no. 9)

stores access control list for every file

indexed by fixed-length key

files store appropriate key in their MFT record


$MFT (file no. 0)

stores Master File Table

to read MFT, need to know first entry of MFT


a pointer to it stored in first sector of NTFS


MFT can start small and grow dynamically

To avoid fragmentation, part of start of volume reserved to MFT expansion


when full, halves reserved MFT area



Locality heuristics

Best fit

finds smallest region large enough to fit file

NTFS caches allocation status for a small area of disk


writes that occur together in time get clustered together


SetEnfOfFile() lets specify expected length of file at 
creation



COW File Systems 
(copy-on-write)

Data and metadata not updated in place, but 
written to new location


transforms random writes into sequential writes

Adding a block 
to a file

free space bitmap

Inode

Traditional

indirect

block

New 
data 
block

COW

free space bitmap

Inode

indirect

block

New 
data 
block

Update 
Inode

Update 
indirect 
block

Update 
bitmap



COW File Systems 
Why?

Small writes are expensive


Small writes are expensive on RAID

expensive to update a single block (4 disk I/O) but efficient 
for entire stripes


Caches filter reads


Widespread adoption of flash storage

wear leveling, which spreads writes across all cells, important to 
maximize flash life

COW techniques used to virtualize block addresses and redirect 
writes to cleared erasure blocks 


Large storage capacities enable versioning

versioning is easy with COW!
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File access in FFS

What it takes to read /Users/lorenzo/wisdom.txt

Read Inode for “/” (root) from a fixed location

Read first data block for root

Read Inode for /Users

Read first data block of /Users

Read Inode for /Users/lorenzo

Read first data block for /Users/lorenzo

Read Inode for /Users/lorenzo/wisdom.txt

Read data blocks for /Users/lorenzo/wisdom.txt

“A cache is a man’s best friend”



Caching and consistency
File systems maintain many data structures


bitmap of free blocks

bitmap of inodes

directories

inodes

data blocks


Data structures cached for performance

works great for read operations...

...but what about writes?


Solutions:

write-back caches: delay writes for higher performance at the cost 
of potential inconsistencies

write through caches: write synchronously but poor performance


do we get consistency at least?



Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

owner:  lorenzo

permissions: read-only

size:   1

pointer:  4

pointer:  null

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2



Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:  lorenzo

permissions: read-only

size:   1

pointer:  4

pointer:  null

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2

update inode



Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:  lorenzo

permissions: read-only

size:   2

pointer:  4

pointer:  5

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2

update inode

update data bitmap 



Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:  lorenzo

permissions: read-only

size:   2

pointer:  4

pointer:  5

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2

update inode

update data bitmap 

1

What if a crash or power outage occurs between writes?



What if only a single 
write succeeds?

Just the data block (D2) is written to disk

data is written, but no way to get to it - in fact, D2 still 
appears as a free block

as if write never occurred


Just the updated inode (Iv2) is written to disk

if we follow the pointer, we read garbage

file system inconsistency: data bitmap says block is free, while 
inode says it is used. Must be fixed


Just the updated bitmap is written to disk

file system inconsistency: data bitmap says data block is used, 
but no inode points to it. 

No idea which file the data block was to belong to! 



What if two writes 
succeed?

Inode and data bitmap updates succeed

file system is consistent

but reading new block returns garbage


Inode and data block updates succeed

file system inconsistency. Must be fixed


Data bitmap and data block succeed

file system inconsistency

no idea to which file data block should belong to!



The Consistent Update 
problem

Several file systems operations update multiple 
data structures


Move a file between directories

delete file from old directory

add file to new directory


Create new file

update inode bitmap and data bitmap

write new inode

add new file to directory file


Even  with write through we have a problem!



Ad hoc solutions: 
metadata consistency

Synchronous write through for metadata


Updates performed in a specific order

File create


write data block

update inode

update inode bitmap

update data bitmap

update directory

if directory grew: 1) update data bitmap; 2) update directory inode


On file crash

fsck


scans entire disk for inconsistencies, starting with superblock

scans inodes, indirect blocks, double indirect, etc tu understand which blocks are allocated

uses scan results to update bitmaps

file created but not in any directory: delete file


Issues

need to get ad-hoc reasoning exactly right

synchronous writes lead to poor performance

recovery is sloooow: must scan entire disk



Ad hoc solutions: 
user data consistency
Asynchronous write back


forced after a fixed interval (e.g. 30 sec)

can lose up to 30 sec of work


Rely on metadata consistency

updating a file in vi


delete old file

write new file



Ad hoc solutions: 
user data consistency
Asynchronous write back


forced after a fixed interval (e.g. 30 sec)

can lose up to 30 sec of work


Rely on metadata consistency

updating a file in vi


write new version to temp

move old version to other temp

move new version to real file

unlink old version


if crash, look in temp area and send “there may be a problem” email to user



Ad hoc solutions: 
implementation tricks
Block I/O Barriers


allow a block device user to enforce ordering among I/O 
issued to that block device

client need not block waiting for write to complete

instead, OS builds a dependency graph 


no write goes to disk unless all writes it depends on have



A principled approach: 
Transactions

Group together actions so that they are

Atomic: either all happen or none

Consistent: maintain invariants

Isolated: serializable (schedule in which transactions occur 
is equivalent to transactions executing sequentially

Durable: once completed, effects are persistent


Critical sections are ACI, but not Durable


Transaction can have two outcomes:

Commit: transaction becomes durable

Abort: transaction never happened


may require appropriate rollback



Journaling  
(write ahead logging)
Turns multiple disk updates into a single disk write


“write ahead” a short note to a “log”, specifying 
changes about to be made to the FS data structures

if a crash occurs while updating the FS data structure, 
consult log to determine what to do


no need to scan entire disk!



Data Jounaling: 

an example

We start with


We want to add a new block to the file

Three easy steps


Write to the log 5 blocks:

write each record to a block, so it is atomic


Write the blocks for Iv2, B2, D2 to the FS proper

Mark the transaction free in the journal


What happens if we crash before the log is updated?

no commit, nothing to disk - ignore changes!


What happens if we crash after the log is updated?

replay changes in log back to disk

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

TxBegin | Iv2 | B2 | D2 | TxEnd



Journaling and  
Write Order

Issuing the 5 writes to the log            
sequentially is slow 


Issue at once, and transform in a single sequential 
write


Problem: disk can schedule writes out of order

first write TxBegin, Iv2, B2, TxEnd

then write D2

TxBegin | Iv2 | B2 | D2 | TxEnd

Disk loses power

Log contains:


syntactically, transaction log looks fine, even with nonsense in 
place of D2!

TxBegin | Iv2 | B2 | ?? | TxEnd

Set a Barrier before TxEnd


TxEnd must block until data on disk



What about 
performance?

All data is written twice... surely it is horrible?


100 1KB random writes vs. log + write-back

Direct write: 100 x Trw ≈ 100 x 10ms ≈ 1s

Pessimistic log


100 x Tsw + 100 x Trw ≈ 100/(50x103) + 1s = 2ms + 1s


Realistic (write-back performed in the background)

more opportunities for disk scheduling

100 random writes may take less time than in direct write 
case



Back to



The early 90s
Growing memory sizes


file systems can afford large block caches

most reads can be satisfied from block cache

performance dominated by write performance


Growing gap in random vs sequential I/O performance

transfer bandwidth increases 50%-100% per year

seek and rotational delay decrease by 5%-10% per year

using disks sequentially is a big win


Existing file system perform poorly on many workloads

6 writes to create a new file of 1 block


new inode | inode bitmap | directory data block that includes file | 
directory inode (if necessary) | new data block storing content of new file | 
data bitmap


lots of short seeks



Log structured  
file systems

Use disk as a log 

buffer all updates (including metadata!) into a segment

when segment is full, write to disk in a long sequential 
transfer to unused part of disk


Virtually no seeks

much improved disk throughput


But how does it work?

suppose we want to add a new block to a 0-sized file

LFS paces both data block and inode in its in-memory 
segment

D I|
Fine.


But how do we find the inode?



Finding inodes

in UFS, just index into inode array
Super Block | Inodes | Data blocks

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Super Block                     Inodes                       Data blocks

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 ...

512 bytes/block

128 bytes/inode

To find address inode 11:

 addr(b1)+ #inode x    
   size(inode)

Same in FFS (but Inodes are at divided (at 
known locations) between block groups 



Finding inodes in LFS

inode map: a table indicating where each inode is 
on disk


inode map blocks written as part of the segment

... so need not seek to write to imap


but how do we find the inode map?

table in a fixed checkpoint region


updated periodically (every 30 seconds)


The disk then looks like

CR freeseg1 seg2 seg3 free



LFS vs UFS
inode

directory

data

inode map

Log

Unix File System

Log-structured File System

Blocks written to 
create two 1-block files: 
dir1/file1 and dir2/file2 
in UFS and LFS

dir1

dir1 dir2

dir2

file1 file2

file1 file2



Reading from disk in LFS

Suppose nothing in memory...

read checkpoint region

from it, read and cache entire inode map

from now on, everything as usual


read inode

use inode’s pointers to get to data blocks


When the imap is cached, LFS reads involve 
virtually the same work as reads in traditional file 
systemsmodulo an 


imap lookup



Garbage collection
As old blocks of files are replaced by new, segment in log 
become fragmented


Cleaning used to produce contiguous space on which to write

compact M fragmented segments into N new segments, newly 
written to the log

free old M segments


Cleaning mechanism:

How can LFS tell which segment blocks are live and which dead?


Cleaning policy

How often should the cleaner run?

How should the cleaner pick segments?



Segment summary block

For each data block, stores

the file it belongs (inode#)

the offset (block#) within file


During cleaning 

allows to determine whether data block D is live


use inode# to find in imap where inode is currently on disk

read inode (if not already in memory)

check whether pointer for block block# refers to D’s 
address


allows to update file’s inode with correct pointer if D is 
live and compacted to new segment



Which segments to 
clean, and when?

When?

periodically

when you have nothing better to do

when disk is full


Which segments?

utilization: how much it is gained by cleaning 


segment usage table tracks how much live data in segment


age: how likely is the segment to change soon

better to wait on cleaning a hot block



Crash recovery
The journal is the file system!


On recovery

read checkpoint region


may be out of date (written periodically)

may be corrupted


1) two CR blocks at opposite ends of disk / 2) timestamp blocks before and 
after CR


use CR with latest consistent timestamp blocks


roll forward

start from where checkpoint says log ends

read through next segments to find valid updates not 
recorded in checkpoint


when a new inode is found, update imap


when a data block is found that belongs to no inode, ignore



Towards 

Distributed Systems



What is a  distributed 
system?



The Client/Server 
paradigm

Server

offers some service (e.g., file server)

may exist in more than one node


Client

uses the service


The basic pattern

clients binds (i.e., connects) to the server

client sends request (with paramenters) to perform services 

server returns response



How to communicate?

Messages

very flexible

leave programmers to worry about

message format 

how to pack and unpack messages

how to decode at the server

error handling


Procedure calls

an old friend!

server is a module that exports a set of procedures



Remote Procedure Call

Birrell & Nelson, Xerox PARC, ‘80s

Procedure calls as basis for distributed communication


How can we make RPC look like LPC?

how can we make it invisible to the programmer?

what are the semntics of parameter passing?

how do we locate the server (binding)?

how do we support heterogeneity (OS, architecture, programming 
language)?


Three-part solution

user program (client or server)

set of stub procedures

runtime support



Building a server

Define server’s interface in an interface definition 
language (IDL)


specifies names, paramenters, and types for all server 
procedures that clients can invoke


Stubs compiler

reads IDL

produces a client and a server stub for each server 
procedure


manage all details of remote client-server communication


Server and client developers link their code to 
respective stub 



RPC Stubs

Looks to client as callable 
server procedure

Client program thinks it is 
calling the server

Client-side stub
Server program thinks it is 
called by client 

foo actually called by 
server’s stub

Server-side stub

call foo(x,y)client

program

client

stub

server

program

server

stubproc foo(a,b)

proc foo(a,b)
begin foo(a,b)
end foo(a,b)

call foo(x,y)

call foo call foo

stubs communicate 
with one another



RPC Stubs
client


program

client

stub

server

program

server

stub

call foo call foo

RPC

runtime

call foo(x,y)
client makes 
local call to 
stub proc.

proc foo(a,b)
begin foo(a,b)
end foo(a,b)

server 
called by 
its stub

proc foo(a,b)
stub builds 
msg packet, 

inserts params

runtime sends msg 
to remote node

runtime receives 
msg and calls stub

call foo(x,y)
stub unpacks 
params and 
makes call

RPC

runtime

send msg msg received

Call



RPC Stubs
client


program

client

stub

server

program

server

stub

return return

RPC

runtime

call foo(x,y) client 
continues

proc foo(a,b)
begin foo(a,b)
end foo(a,b)

server 
procedure 
returns

proc foo(a,b)
stub unpacks 
msg, returns 

to caller

runtime receives 
msg, calls stub

runtime responds to 
original message

call foo(x,y)
stub builds 

result msg with 
output args

RPC

runtime

msg received send msg

Return



RPC Binding

Server at startup exports its interface

identifies itself to a network name server

tells local runtime address of the dispatch routine that will 
perform requested services 


Client, before issuing calls, imports server

RPC runtime looks up service though network name server

contacts server to set up a connection


Import and export are explicit calls in the code



RPC Marshalling
Packing of procedure parameters in a message packet


notion close to pickling (Python), serialization (Java)


RPC stubs call type-specific procedures to marshal/
unmarshal call parameters

client

stub proc foo(a,b)

marshals 
parameters 
into call 
packet

send msg

call foo

server

stubproc foo(a,b)

unmarshals 
parameter to 
call server’s 
procedure

send msg

call foo



RPC Marshalling
Packing of procedure parameters in a message packet


notion close to pickling (Python), serialization (Java)


RPC stubs call type-specific procedures to marshal/
unmarshal call parameters


Roles reverse on return

server stub,marshals return parameters; client stub unmarshals

client

stub proc foo(a,b)

marshals 
parameters 
into call 
packet

send msg

call foo

server

stubproc foo(a,b)

unmarshals 
parameter to 
call server’s 
procedure

send msg

call foo


