Main Memory

CS 4410, Operating Systems

Spring 2017
Cornell University

Lorenzo Alvisi
Anne Bracy

See: Ch 8 & 9 in OSPP textbook

The slides are the product of many rounds of teaching CS 4410 by Professors Sirer, @/

Bracy, Agarwal, George, and Van Renesse.

Main Memory

* Address Translation (Chapter 8)

* Caching & Virtual Memory (9.1-9.7)

New: all in the broader context of the OS

(and its perspective)

Social Network

Address Translation

* Paged Translation
e Efficient Address Translation

Paged Translation in the Abstract

Processor’s View Physical
Memory
TERMINOLOGY ALERT N
Page: R AR >|Codel
the data itself > Data0
VPage O|: Codel : . >|Heap1
Frame: VPage 1[) Codel
. . Data > HeapO
the physical location) bata
Heap
" > Heapz
VPage N|: Stack >|Stack]
e Joracio
No more external fragmentation! & N
rame

Physical

Paged Address Translation Memory

Physical
Address
RERRPRED >| Frame Offset
Processor : R
Virtual : Page Table : o
Pl Address Frafme Access :
g § > Page# Offset :
: reeerereeeeennnnsd s >
Virtua| ..
Address >
S)IIIIIIIIIIII
struct { S S— ,
int frame; :

bit is_valid, is_dirty, ..; :
} PTE; Physical
struct PTE page_table[NUM_VIRTUAL_PAGES]; . Address

int translate(int vpn) { e
if (page_table[vpn].is va11d)
return page_table[vpn].frame;
else..

}

Frame 0
Frame 1

Frame M

5

Address Translation, Conceptually

Processor

Virtual
Address

...................... >

Translation | Invalid --------- > Ralse _
Exception
Va]id
: Physical
................... > 3
. Memory
Physical
Address

5 Paging Questions

nat is saved/restored on a context switch?
nat if page size is very small?

nat if page size is very large?

nat if the address space is sparse?

nat if the virtual address space is large?

S === =

"9 B A
® 4 P y >
A;'\ /4)
[o \
\ /

5 Paging Questions

What is saved/restored on a context switch?
* Pointer to page table, size of page table
* Page Table itself is in main memory

=S ===

nat if page size is very small?
nat if page size is very large?
nat if the address space is sparse?

nat if the virtual address space is large?

5 Paging Questions

What is saved/restored on a context switch?
What if page size is very small?
* Lots and lots of page table entries!

nat if page size is very large?
nat if the address space is sparse?
nat if the virtual address space is large?

===

5 Paging Questions

What is saved/restored on a context switch?
What if page size is very small?
What if page size is very large?

* Internal fragmentation

What if the address space is sparse?
What if the virtual address space is large?

10

5 Paging Questions

What is saved/restored on a context switch?

What if page size is very small?
What if page size is very large?
What if the address space is sparse?

ots of wasted space in the page table
Per-processor heaps

Per-thread stacks

 Memory-mapped files
* Dynamically linked libraries

What if the virtual address space is large?

11

5 Paging Questions

W
W
W
W

nat is saved/restored on a context switch?
nat if page size is very small?
nat if page size is very large?

nat if the address space is sparse?

What if the virtual address space is large?
* Even more wasted space
e 32-bits, 4KB pages => 1M page table entries
* 64-bits =>4 quadrillion page table entries

12

Address Translation

* Paged Translation

e Efficient Address Translation
+ Multi-level Page Tables
+ |nverted Page Tables
+ TLBs

13

Multi-Level Page Tables to the Rescue!

Implementation Physical
Memory
Processor
: Virtual
§ Address
-3 Index 1 Index 2 Index 3 Offset
: : : Physical :
Level 1 Address ;
Frame Offset [>
“esecscsessesscsedioscsscssesessessqe) ~
. Level 2

Level 3

+ Allocate only PTEs in use
+ Simple memory allocation
— 2+ lookups per memory reference

Back to the movies...

15

Can we do better? Inverted Page Table

Memory
Virtual Addr frame 7
CPU|—> PID || VPN [offset
frame 6
frame 5
frame i [offset [—»|frame 4
e OfPID } VPN Physical
2 1] PID | VPN Add frame 3
l 2| PiD | VPN 2 r
3| PiD | VPN frame 2
41 PID | VPN
5] PID | VPN frame |
Is there a 673 E:g zm Solution:
. : frame O
prob/em. Dage Table hashlng

Complete Page Table Entry (PTE)

Valid Protection R/W/X Ref Dirty Index

Index is an index into
- table of memory frames (if bottom level)
- table of page table frames (if multilevel page table)
- backing store (if page is not valid)

Synonyms:
- Valid bit == Present bit
- Dirty bit == Modified bit
- Referenced bit == Accessed bit

(the contents of) A Virtual Page Can Be

Mapped
e to a physical frame

Not Mapped (- Page Fault)
e in a physical frame, but not currently mapped
e still in the original program file
e zero-filled (heap/BSS, stack)
e on backing store (“paged or swapped out”)
e illegal: not part of a segment
— Segmentation Fault

18

Address Translation

* Paged Translation

e Efficient Address Translation
+ Multi-level Page Tables
+ |Inverted Page Tables
+ TLBs

19

Translation Lookaside Buffer

Cache of virtual to physical page translations physica
Major efficiency improvement Memory

Virtual
Address

Page# Offset

Translation Lookaside Buffer (TLB)

Virtual Page

Page Frame Access Physical

)@ AddreSS v
Matching Entry ,@ 5| Frame Offset ...

,@

N - Page Table

Lookup

5 Translation Questions

W
W
W
W

many

nen does the CPU access the TLB?
nens on a TLB miss?

nat
nat

nat

What

Nd
Nd
Nd

0
0

0

oens tothe T

oens when a

orocesses?
nappens when a page is swapped out?

B on a context switch?

nage is shared among

21

5 Translation Questions

When does the CPU access the TLB?
* First thing!
* While you access the L1 caches

W
W
W

nat
nat

nat

nappens on a TLB miss?
nappens to the TLB on a context switch?

nappens when a page is shared among

many processes?
What happens when a page is swapped out?

22

5 Translation Questions

When does the CPU access the TLB?
What happens on a TLB miss?
* Trap to kernel, kernel fills TLB w/translation,
resumes execution

What
What

many
What

nappenstothe T
nappens when a
orocesses?

B on a context switch?

nage is shared among

nappens when a page is swapped out?

23

5 Translation Questions

What happens to the TLB on a context switch?

* Becomes totally useless? Flush?
* Tag the TLB with a PID
e TLB hit only if PID matches current process

Implementation Physical
Memory
Processor
. Page
Virtual Frame
Address
g............) Page# Offset
: Translation Lookaside Buffer (TLB)
Process |D
: Process ID Page Frame Access Physical :
,@ Address V
Matching Entry ,@ ... o Frame | Offset |-

Page Table
)@ ” Lookup 24

5 Translation Questions

W
W
W

nen does the CPU access the TLB?
nat happens on a TLB miss?

nat happens to the TLB on a context switch?

What happens when a page is shared among
many processes?
* (Shared frames is more accurate)
 Examples: NULL Page (invalid to all, why?),

exec-only (libraries), read-only data (strings),

* Mostly nothing changes...
* Need to indicate sharing in inverted page table
What happens when a page is swapped out?

25

5 Translation Questions

When does the CPU access the TLB?
What happens on a TLB miss?
What happens to the TLB on a context switch?
What happens when a page is shared among
many processes?
What happens when a page is swapped out?
* Need to update the Page Table(s)
e Core Map (frames - pages)
* Need to update the TLB
* TLB Shootdown

26

Nice Addr Translation Feature: Copy-on-Write

Useful for “fork()” and initialized data

P1 virtual
. memory
Initially map page read-only
Upon page fault: .~
* Allocate a new frame l _________________
+ Copy frame g

e Also map “other” page R/W

 Map new page R/W ﬂ

/ ’
/ ’
4 ’
4 ’
4 ’
/ ’
’
4 ,
/ // //
’
e
AR
e

Physical
memory

R->
RW

N

RW

27

Address Translation Uses

Process isolation
* Keep a process from touching anyone else’s memory,
or the kernel’s
Efficient interprocess communication
* Shared regions of memory between processes
Shared code segments
* common libraries used by many different programs
Program initialization
e Start running a program before it is entirely in
memory
Dynamic memory allocation

* Allocate and initialize stack/heap pages on demand

28

MORE Address Translation Uses
Program debugging

* Data breakpoints when address is accessed
Memory mapped files
* Access file data using load/store instructions
Demand-paged virtual memory
* [llusion of near-infinite memory, backed by disk or
memory on other machines
Checkpointing/restart
* Transparently save a copy of a process, without
stopping the program while the save happens
Distributed shared memory
* [[lusion of memory that is shared between machines

29

* Assighment: where do you put the data?
* Replacement: who do you kick out?
* Problems with Caching

30

What are some examples of caching?

* hardware caches foj %) “.‘

* Internet naming

* web content

e web search

* email clients

* incremental compilation
* just in time translation

* virtual memory

* file systems

* branch prediction

31

Memory Hierarchy

Cache Hit Cost Size
1st level cache/ffirst level TLB 1ns 64 KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100 ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100us 100GB
Local disk 10ms 1TB
Data center disk 1i0ms 100PB
Remote data center disk 200 ms 1 XB

Every layer is a cache for the layer below it.

32

* Assighment: where do you put the data?
* Which entry in the cache? — not much choice
* Which frame in memory?

* Replacement: who do you kick out?

* Problems with Caching

33

Working Set

First Definition:
Collection of a process’ most recently used pages
The Working Set Model for Program Behavior, Peter J. Denning, 1968

Formal definition:
Pages referenced by process in last A time-units

100% -

75%

at what point does the working set
of this application fit in the cache?

Hit Rate

50%

1 2 4 8
Cache Size (KB)

34

Thrashing

Excessive rate of paging
Cache lines evicted before they can be reused

Causes:
e Cache not big enough to fit working set
e Bad luck (conflicts)
e Bad eviction policies (later)
Prevention:
e restructure your code
(smaller working set, shift data around)
e restructure your cache

35

Why “thrashing”?

The first hard disk
drive—the IBM
Model 350 Disk File
(came w/IBM 305
RAMAC, 1956).

Total storage =
5 million characters
(just under 5 MB).

http://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/

“Thrash” dates from the 1960’s, when disk drives were as large as
washing machines. If a program’s working set did not fit in memory, the
system would need to shuffle memory pages back and forth to disk. This
burst of activity would violently shake the disk drive.

36

* Assighment: where do you put the data?
* Which entry in the cache? — not much choice
* Which frame in memory? — lots of freedom

* Replacement: who do you kick out?

* Problems with Caching

37

Virtually Addressed Caches

e each page occupies
I [N

some # of consecutive
cache entries

e same-colored pages
mapped to sets of same
color in cache

e Pages live across entire
color range of the cache.
Also supports spatial

Virtual locality.

Memory
Address
Space

Virtually Addressed
32 KB L1 Cache

38

Phys:cally Addressed Caches... What if virtual

2l pages are assigned

: to physical pages
H2
G2
F2
E2
D2
C2
B2
A2
HI
Gl
Fl
El
DI
Cl
Bl
Al
HO
GO
FO
EO y
DO
Co
BO

that are 64KB
Virtual Addr Space Physical Addr Space

apart?

BAD: disrupts
spatial locality

WORSE: cache
effectively smaller

Physically
Addressed
32 KB L1 2

Solution: Cache Coloring (AKA Page Coloring)

Hm \
S !\
Al \ ;
Ho \
Go |\
1. Color frames T \ \y,
according to cache Do 7\
configuration. B0’ \\

A0
P2’s Virtual Addr Spdce

2.Spread each
) Hm
rocess’ pages
P Pag —

dCross as many Cl

: Bl \ /
colors as possible. Al

HO |
co [/
o /[
0 !

DO

Co0

BO Process 2
AO

P1’s Virtual Addr Space

Physical Addr Space 32KBL1 *

Caching

* Assighment: where do you put the data?
* Replacement: who do you kick out?
* Problems with Caching

What happens when Memory is full?

41

Swapping vs. Paging

Swapping
 Loads entire process in memory, runs it, exit
« “Swap in” or “Swap out” a process
* Slow (for big, long-lived processes)
« Wasteful (might not require everything)
Paging
* Runs all processes concurrently, taking only pieces of memory
(specifically, pages) away from each process
 Finer granularity, higher performance
* Paging completes separation between logical memory and
physical memory — large virtual memory can be provided on
a smaller physical memory

The verb “to swap” is also used to refer to pushing contents of a
page out to disk in order to bring other content from disk; this is
distinct from the noun “swapping”

42

Demand Paging on MIPS

7.

TLB miss 8. Disk interrupt when
. Trap to kernel DMA complete
Page table walk 9. Mark page as valid
Find page is invalid 10. Load TLB entry
Convert virtual address 11. Resume process at
to file + offset =P faulting instruction
Allocate page frame 12. Execute instruction

— Evict page if needed

Initiate disk block read
into page frame

43

Demand Paging

1. TLB miss 8. Disk interrupt when

2. Page table walk DMA complete

3. Page fault (page invalid 9- Mark page as valid

in page table) —P10. Resume process at
—p- 4. Trap to kernel faulting instruction
5. Convertvirtual address 11. TLB miss
to file + offset 12. Page table walk to fetch
6. Allocate page frame translation
— Evict page if needed 13. Execute instruction

7. Initiate disk block read
into page frame

44

Evicting a Page Frame

* Select old page to evict

* Find all page table entries that refer to old page
— If page frame is shared

* Set each page table entry to invalid

* Remove any TLB entries

— Copies of now invalid page table entry

* Write changes on page back to disk, if
hecessary

45

* Assighment: where do you put the data?
* Replacement: who do you kick out?

* Random: pros? cons?

* FIFO

* MIN

* LRU

* LFU

* Approximating LRU
* Problems with Caching

46

First-In-First-Out (FIFO) Algorithm

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5

4 frames (4 pages in memory at a time per process):

FRAMES time | Request| Result
o 1 miss
1 1] 2 | miss
112 2 3 miss
1 2 3 3 4 Mmiss
1 2 3 4 | 4 1 hit
1 2 3 4 | 5 2 hit
1 2 3 4 | 6 5 miss
5 2 3 4 7 1 miss
5 1 3 4 8 2 miss
5 1 2 4 9 3 miss
5 1 2 3 | 16 4 miss
4 1 2 3 | 11 5 miss
4 5 2 3 | 12

& contents of frames at time of reference

marks arrival time
of frame f

.F

10 page faults &

47

Optimal Replacement Algorithm (MIN)

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5

4 frames (4 pages in memory at a time per process):

FRAMES time [Request | Result
0 1 miss
1 1 2 miss
1 2 2 3 miss
1 2 3 3 4 Mmiss
1 2 3 4 | 4 1 hit
1 2 3 4 | 5 2 hit
1 2 3 4 | 6 5 miss
1 2 3 5 |7 1 hit
1 |2 3]5 [2 | nie
1 235 [3 | ne
1 | 2 | 3] 5 [20] 4 | miss
1123)5)11 5 miss
1 2 3 5 |12

7 page faults ©@
(is 7 actually good?)
Let’s always use MIN! &
< Which to kick out at t=6 ?

MIN says the one you’ll use
furthest in the future (here, 4)

use this as an upper-bound

Least Recently Used (LRU)
Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5

4 frames (4 pages in memory at a time per process):

)
N

FRAMES time | Request| Result
0 1 miss

1 1 2 miss
1 2 2 3
1 2 3 3 A
1 2 3 4 | 4 1
1 2 3 4 | 5 2
1 2 3 4 | 6
1 2 5 4 7
1 2 5 4 8
1 2 5 4 9
1 [2 [5] 3 [20]_4_1 miss
1 2 4 3 |11 5 miss
5 2 4 3

8 page faults

< Which to kick out? LRU says the
one used furthest back (here, 3)

< W

< W
< W

NIC
NIC

NIC

n used furthest bac
N used furthest bac

N used furthest bac

K? 4
k? 5

k? 1

49

Least Frequently Used (LFU)

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5

4 frames (4 pages in memory at a time per process):

FRAMES time | Request| Result || USe cOUNT
7 1 miss

1 1 2 miss || 1
1| 2 2 3 miss_|[1]1
1 (2| 3 31 4 | miss |I1]1]1
1|2 |3]|4]|4] 1 hic (|1[1[1]1]
1 (2]|3|4]|5] 2 hit (|2[1[1]]
1| 2 3 |4 |6 5 miss [|2]12]1]1
1|12 |54 |7 1 hit ||2[2[1]1
1|2 |5]|4 8| 2 hit (|3[2[1]1
1 12|54 (°] 3 |miss]|3/31]1
1 2 5 3 |10 4 miss [|3[2[1]1
1 2 | 4 | 3 |12 5 miss [|913]1]1
1|2 | 4|5 |22 31311]1

8 page faults

& Which to kick out? 3
(let’s break ties with FIFO)

& Which to kick out? 4

& Which to kick out? 5
& Which to kick out? 3

50

How to implement LRU?

In software, use a linked list:
* every hit moves you to the front of the list
 evict from the back of the list

In hardware:

e 2-way set-associative cache?

e 4-way set-associative cache?

e List of all your frames in memory?
e big list, costly timestamps &

e per frame use bit

51

Clock Algorithm: Not Recently Used

Page Frames

Approximating LRU*

0-use:0

1-use:1

2-use:0

Periodically, sweep
through all pages
e Used? Clear use bit

e Unused? reclaim
e update core map
e invalidate page table
e write back if dirty
e TLB shootdown
e add to free list .. 8-use:0 7-use:T

3-use:0

4-use:0

5-use:1

(*yes, LRU was already an approximation...) 52

; blue 1’ d
Clock AlGOrithm Problems ;s ceered oy aveen o

bit was cleared by green hand

Page Frames

What if Memory is Large?

0-use: 1 1

1-use:

Leading edge clears use bit
e slowly clears history
e finds victim candidates

evicts 1st use=0
frame it finds

3- use;

4-use 1

Trailing edge evicts pages

with use bit setto 0 5-use:1| 1
e fast: original clock algorithm
e slow: all pages look used

8-use: O 7-USse:

53

* Swapping & Paging
* Assigning a virtual page a physical frame
* Replacement Policies
* Problems with Caching
* Ineffectiveness
* Fairness

54

Exploiting LRU Eviction Policies

static char *workingSet; // memory program wants to acquire
static int soFar; // num pages program has so far
static sthread_t refreshThread;

// Thread touches pages in memory, keeping them recently used

void refresh () {
int 1i;

while (1) {
// Keep every page in memory recently used.
for (i = 0; i < soFar; i += PAGESIZE)
workingSet[i] = 0;

}

int main (int argc, char xxargv) {
// Allocate a giant array.
workingSet = malloc(ARRAYSIZE);

soFar = 0;

// Create a thread to keep our pages in memory
thread _create(&refreshThread, refresh, 0);

// Touch every page to bring it into memory
for (; soFar < ARRAYSIZE; soFar += PAGESIZE)
workingSet[soFar] = 0;

// Now that everything is in memory, run computation...

